簡易檢索 / 詳目顯示

研究生: 鄧立忠
LiZhong Deng
論文名稱: P2P殭屍網路的流量分析與辨識
P2P Botnet Traffic Analysis and Identification
指導教授: 唐文華
Wernhuar Tarng
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 59
中文關鍵詞: P2P 殭屍網路網路流量偵測網路安全
外文關鍵詞: P2P botnet, Network traffic detection, Network security
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 網際網路已經成為人們不可或缺的一部分,上網查資料、使用拍賣網站以及玩線上遊戲等等,它帶來給人們便利性,但正因為其便利,因此也暗藏著危險性存在。有不少的不肖分子想要透過網際網路竊取破壞他人資料以謀取利益,所以其安全性不可不察。
    攻擊者為了達到目的,通常會使用多種的攻擊手段,包括:分散式阻斷服務攻擊(Distributed Denial of Service, DDoS)、垃圾郵件(Spam)等等,而這些攻擊手段則需要多台的電腦資源才能夠呈現其效果,因此有人會透過惡意程式(Malware)試圖感染植入缺少防護或是粗心使用者的電腦當中使其形成殭屍網路(Botnet),因此抵禦殭屍網路成為網路安全中相當重要的一個議題。P2P殭屍網路是一種新型的殭屍網路型態,因為任何成員都可以成為攻擊者控制整個網路的節點,所以較難以抵禦。
    本研究提出以P2P殭屍網路流量特徵行為的基礎,分成六大階段對網路流量進行辨識,試圖找出已知或未知的P2P殭屍網路病毒流量,透過流量相關資訊進而找到殭屍電腦的位置加以管制處理以避免感染繼續蔓延。


    The Internet has become an indispensable part of the human life and it provides us with convenient services, for example, searching for information, using auction website, playing online game, and so on. Due to its convenience, hackers are trying to commit crimes to obtain some benefits. Therefore, network security has become a important issue of research area today.
    Usually, crackers use a variety of methods to achieve the purpose of attacks, for example, Distributed Denial of Service (DDOS) and spam mail. These methods require a large number of computers to achieve the goal; hence crackers must spread malicious software to infect the computers with lower defending mechanisms. The infected computers will become the zombies in the botnets controlled by the crackers.Thus, it is an important subject in network security to detect and defend the botnets.Among them, the Peer-to-Peer (P2P) botnet is a new type of botnets with every zombie as a peer controlled cracker and thus the defending is more difficult.
    The object of this research is to find out the traffic flows produced by known or unknown malicious software for defending the P2P botnet. Base on the analysis of
    P2P network’s connection flows and their package patterns, a mechanism containing six stages is proposed to identify P2P botnet traffics and locate the zombies, and the
    objective is to restrain these computers from further infection.

    第一章 緒論 1 第一節 背景 1 第二節 動機 1 第三節 目的 2 第二章 相關文獻探討 4 第一節 殭屍網路 4 第二節 P2P 技術 12 第三節 機器學習 18 第三章 系統設計 21 第一節 P2P 應用程式的流量行為特徵 21 第二節 P2P 殭屍網路之流量行為特徵 25 第三節 流量特徵 28 第四節 系統方法設計 31 第四章 模擬實驗 42 第一節 擷取流量樣本 43 第二節 實驗說明及目的 43 第三節 實驗 44 第五章 結論以及未來展望 48 第六章 參考文獻 49

    1. 資安人, “殭屍電腦從亞太第一變全球第一,"http://www.informationsecurity.com.tw/article/article_detail.aspx?aid=5690.
    2. 劉邦威, “P2P 殭屍網路之適應性防禦機制," 中原大學資訊工程學系碩士學位論文, 2009.
    3. 時尚新聞, “殭屍網路,"http://reynard-news.blogspot.com/2010/01/blog-post_6724.html.
    4. 維基百科, “分散式阻斷服務攻擊,"http://zh.wikipedia.org/zh-tw/分散式阻斷服務攻擊
    5. 台灣微軟資安部落格, “第一個產業與政府聯手對抗殭屍網路的行動,"http://blogs.technet.com/b/twsecurity/archive/2010/03/10/waledac.aspx
    6. 維基百科, “點對點技術," http://zh.wikipedia.org/zh-tw/點對點技術
    7. 李紹唐, “P2P網路流量管理系統之設計與實作," 國立中山大學資訊工程學系碩士學位論文, 2008.
    8. 維基百科, “Gnutella," http://zh.wikipedia.org/zh-tw/Gnutella
    9. 維基百科, “Napster," http://zh.wikipedia.org/zh-hant/Napster
    10. Skype官方網站, http://www.skype.com/intl/zh-Hant/home/
    11. 維基百科, “CAN," http://zh.wikipedia.org/zh-tw/控制器區域網路
    12. 維基百科, “BitTorrent,"http://zh.wikipedia.org/zh-tw/BitTorrent_(协议)
    13. Foxy官方網站, http://tw.myfoxy.net/
    14. GoGoBox官方網站, http://www.gogobox.com.tw/
    15. 陳薏卉, “基於連線模式之即時P2P檔案分享的流量辨識方法," 國立交通大學網路工程所碩士學位論文, 2009.
    16. 周豐谷, “P2P資訊流偵測," 國立台灣科技大學電子工程系碩士學位論文, 2006.
    17. 陳建伯,許洲銘,邱俊融,唐善智,吳敬慧,劉怡凭,“以封包特徵為基礎 識別P2P檔案分享行為," 銘傳大學電腦與通訊工程學系
    18. Z. Zhu, G. Lu, Y. Chen, Z. J. Fu, P. Roberts, and K. Han. “Botnet research survey," In 2008 32nd Annual IEEE
    International ComputerSoftware and Applications Conference (COMPSAC'08), Turku, Finland,July 2008.
    19. Wikipedia, “Botnet," http://en.wikipedia.org/wiki/Botnet
    20. P. Bacher, T. Holz, M. Kotter, and G. Wicherski, “Know your Enemy:Tracking Botnets,"http://www.honeynet.org/papers/bots.
    21. Searchengineland, Report: Click Fraud Rate For Q2 2010 28.9%
    22. The Honeynet Project, https://www.honeynet.org/
    23. Zou, C.C. and Cunningham, R.,“Honeypot-Aware Advanced Botnet Construction and Maintenance,"International Conference on
    Dependable Systems and Networks, pp. 199-208, 2006.
    24. Wikipedia, Traffic_flow_(computer_networking).
    25. A. Karasaridis, B. Rexroad, D. Hoeflin, “Wide-scale botnet detection and characterization, " in Proc, USENIX Conf,
    HotBots'07, Cambridge, MA, Apr. 2007.
    26. Goebel, J., Holz, T. “Rishi: Identify Bot-Contaminated Hosts by IRC Nickname Evaluation," 1st Workshop on Hot Topics in
    Understanding Botnets, April 2007.
    27. W. Lu, M. Tavallaee, G. Rammidi, and A. Ghorbani, “BotCop: An online botnet traffic classifier," in Communication
    Networks and Services Research Conf., 2009.
    28. FreeNet, http://freenetproject.org/
    29. Wikipedia, “eDonkey_network,"http://en.wikipedia.org/wiki/EDonkey_network
    30. Subhabrata Sen, Jia Wang, “Analyzing peer-to-peer traffic across large networks," Proceedings of the 2nd ACM SIGCOMM
    Workshop on Internet measurment, November 06-08, 2002, Marseille, France.
    31. Subhabrata Sen, Oliver Spatscheck, Dongmei Wang, “Accurate,scalable in-network identification of p2p traffic using
    application signatures," Proceedings of the 13th international conference on World Wide Web, May 17-20, 2004, New York,
    NY, USA.
    32. C. Livadas, R. Walsh, D. Lapsley, and W. T. Strayer. “Using machine learning techniques to identify botnet traffic.
    InProceedings of the 2nd IEEE LCN Workshop on Network Security (WoNS'2006), 2006.
    33. Gu, G., Perdisci, R., Zhang, J., Lee, W. “Botminer: Clustering analysis of network traffic for protocol- and structure-
    independent botnet detection," In: Proceedings of the USENIX Security Symposium, 2008.
    34. J.R. Quinlan, “C4.5: Programs for Machine Learning," Morgan Kaufmann Publishers, 1993.
    35. Wikipedia, "K-MeansClustering" http://en.wikipedia.org/wiki/K‐means_clustering
    36. Jnlin, “File DHT en.svg,"http://commons.wikimedia.org/wiki/File:DHT_en.svg , January 21, 2007.
    37. IANA, "Port numbers," http://www.iana.org/assignments/port-numbers

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE