簡易檢索 / 詳目顯示

研究生: 黃靜君
Huang, Ching-Chun
論文名稱: Novel Cathodic Deposition of TiO2 Thin Film: Deposition Mechanism, Material Characterization, and Morphology Control
指導教授: 胡啟章
Hu, Chi-Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 125
中文關鍵詞: 二氧化鈦陰極沉積反應機制型態控制銳鈦礦
外文關鍵詞: titanium dioxide, cathodic deposition, reaction mechanism, morphology control, anatase
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In this study, a novel and fast cathodic deposition process is developed to fabricate a titanium dioxide thin film from an aqueous solution containing titanium trichloride and excess sodium nitrate. The reaction mechanism is studied by linear sweep voltammetry (LSV), cyclic voltammetry (CV), and electrochemical quartz crystal microbalance (EQCM). It is found that the redox reaction NO3□ and Ti3+ in the precursor solution accelerates the cathodic deposition of TiO2 thin film drastically. The Ti to O ratio of as-prepared thin film is confirmed to be 1 to 2 by high-resolution X-ray photoelectron spectroscope (HRXPS). Besides, the surface morphologies and crystalline phase are characterized by field-emission transmission electron microscopic (FETEM), field-emission scanning electron microscopic (FESEM), X-ray diffraction (XRD) and atomic force microscope (AFM). The surface morphology of the as-prepared deposit plated at room temperature has been confirmed to be rough and porous, which is mainly full of micropores from the BET results of nitrogen adsorption/desorption isotherms.
    This study also demonstrates that the microstructure of TiO2 film can be designed and controlled by adjusting the temperature and cycle number of cathodic deposition in the previous, specially designed solution. The poor electron conductivity of TiO2 depresses the generation rate of OH□ from the reduction of NO3□ and N2, reducing the TiO2 deposition rate. The morphology and size of TiO2 aggregates are strongly influenced by varying the deposition temperature from 5 to 50 oC. A maximal rate of TiO2 deposition is obtained at 25-35 oC because a higher OH□ concentration favorable for TiO2 formation and more N2 bubbles crowding out TiO2+ and TiO2 primary particulates occur simultaneously at the cathode surface vicinity with increasing the bath temperature. TiO2 deposited at 25 oC is roughest with roughness factor (Ra) = 66.847 nm. This study provides a useful method to control the
    morphology and deposition rate of TiO2 film for practical applications.
    Besides, in this work, two different annealing strategies: annealing in air and microwave-assisted hydrothermal annealing (MAHA) on the crystallinity of TiO2 deposits were compared. A novel and promising strategy is proposed for obtaining well-crystalline TiO2 in the anatase phase (A-TiO2) at a low annealing temperature of 150 oC in a very short annealing time. The porous titanium dioxide films were treated by the MAHA process to increase the crystal size of A-TiO2 at 150 oC. Through FESEM and FETEM analyses, the morphology of TiO2 particles remains grainy without obvious size change. From selected-area electron diffraction (SAED) and Raman characterization, the amorphous as-deposited TiO2 films were effectively transformed into crystalline TiO2 of the anatase phase in the MAHA environment at 150 oC. Effects of the applied power density and MAHA time on the A-TiO2 crystal size at 150 oC were preliminarily investigated. TiO2 with the best crystalline quality was obtained under an applied power density of 120 W for 2 min, very similar to A-TiO2 annealed in air at 300 oC for 1 hr.


    本研究利用三氯化鈦與過量硝酸鈉混合水溶液為新穎鍍液,透過陰極沉積法將二氧化鈦薄膜快速地製備於電極表面。藉由線性伏安掃描(LSV)、循環伏安掃描(CV)及電化學石英天平(EQCM)的分析結果,我們推導出此陰極沉積系統的反應機構;研究發現於電化學掃描時,前驅物溶液中硝酸根離子與三價鈦離子的氧化還原反應會顯著地加速二氧化鈦的沉積速率。透過高解析度X光光電化學光譜(HRXPS),所得薄膜之鈦原子與氧原子的成分比例是2比1,進而確定二氧化鈦的生成。此外,經由場發射式穿透式電子顯微鏡(FETEM)、場發射式掃描式電子顯微鏡(FESEM)、X光繞射光譜(XRD)及原子力顯微鏡(AFM)的鑑定,室溫下沉積之二氧化鈦薄膜的表面型態是粗糙且多孔性的,且經氮氣吸脫附實驗測量證實氧化鈦鍍層之孔洞大多為微孔級(micropores)孔洞。
    本研究亦藉由調控沉積溫度與循環掃描圈數來達到二氧化鈦薄膜微結構的設計與控制。我們發現當沉積圈數越多時,由於前期沉積上去的二氧化鈦薄膜導電性不佳,會減緩後期電極表面的氫氧根離子生成反應,進而降低二氧化鈦的沉積速度。此外,二氧化鈦薄膜的微結構受沉積溫度的影響很大,而最大沉積速率發生於25-35 oC 而非50 oC。經過線性伏安掃描曲線的觀察,高溫(例如50 oC)下,雖然氫氧根離子的產生量會增加,但同時間產生的大量氮氣氣泡亦會將TiO2+離子推擠出電極表面區域,導致二氧化鈦的沉積出現困難。室溫(25 oC)下製備之二氧化鈦薄膜,經由AFM測定,其粗糙因子(roughness factor, Ra)為66.847奈米。簡言之,本研究提供了一個可以因應不同應用而控制二氧化鈦薄膜微觀結構的有效方法。
    此外,本研究透過兩種不同的途徑來增加陰極沉積之二氧化鈦薄膜的結晶性:空氣環境中直接以高溫鍛燒(DHT)與水相環境中以微波輔助水熱方式鍛燒(MAHA)。其中,微波輔助水熱的方式由於可以在相對低溫和相對短的時間內達到好的結晶效果,因此不僅具新穎性且具前瞻性。藉由微波輔助水熱的途徑,銳
    鈦礦(anatase)晶相的多孔性二氧化鈦薄膜僅需150 oC的溫度便可得到。經FESEM與FETEM的分析後,二氧化鈦薄膜中的組成粒子維持球狀且大小不變。從非結晶相到銳鈦礦結晶相的轉變是透過FETEM的選區繞射(SAED)及拉曼光譜(Raman)來確認;同時藉由拉曼光譜的訊號強度比較,我們研究了微波能量密度及反應時間對結晶程度的影響。初步的研究結果顯示,微波輔助法僅需150 oC及2分鐘,便可達到傳統高溫鍛燒法在300 oC及1小時下所得的結晶度。

    Chapter 1 Introduction and Literature Review 1.1 Fundamentals of Electrochemistry………………………………………...……1 1.1.1 Electrochemical System and Reference Electrodes………………….…...1 1.1.2 Faradaic and Nonfaradaic Processes…………………………………..…5 1.1.3 Electrochemical Cells and Reaction Rate…………………………….…5 1.1.4 Factors Affecting Electrode Reaction Rate and Current ………….….….8 1.1.5 Introduction to Mass-Transfer-Controlled Reactions.………………......9 1.1.6 Basic Electrochemical Thermodynamics………………………….…….12 1.1.7 Kinetics of Electrode Reactions………………………………………...13 1.1.8 Introduction to Some Electrochemical Techniques……………………..18 1.1.8.1 Linear Sweep Voltammetry (LSV)……………………………………18 1.1.8.2 Cyclic Voltammetry (CV)…………………………………………….20 1.1.8.3 Controlled-Current Techniques……………………………………….23 1.1.8.4 Controlled-Potential Techniques……………………………………...25 1.2 Brief Review of TiO2...........................................................................28 1.2.1 Introduction of TiO2…………………………………………………….28 1.2.2 Crystalline Phases of TiO2………………………………………………31 II 1.2.3 Photo-Electrochemical Applications of TiO2……………….………34 1.2.4 Techniques for Fabrication of TiO2 Thin Films…………..………….40 1.2.4.1 Sol-Gel Method……………………………………………………….40 1.2.4.2 Chemical Vapor Deposition (CVD) ……..………………………….40 1.2.4.3 Sputtering Method…………………………………………………….41 1.2.4.4 Self-Assembled Monolayers Method…………………………………42 1.2.4.5 Liquid Phase Deposition …….……………………………………..42 1.2.4.6 Atomic Layer Deposition ……………………………………………42 1.2.4.7 Langmuir-Blodgett Method (2D Sol-Gel Method)……………........43 1.2.4.8 Anodization ……..………………………………………………….44 1.3 Review on Electrodeposited TiO2 Films………….………………………45 1.3.1 Anodic Deposition………………………………………………………45 1.3.2 Cathodic Deposition…………………………………………………….51 1.3.3 Potentiodynamic Deposition…………………………………………..64 1.4 Motive and Purpose..………………………………………………………….65 Chapter 2 Experimental Methods 2.1 Chemicals and Instruments……….. …….……………………………………67 2.1.1 Chemicals…………………...……………………………………………67 III 2.1.2 Instruments………………………………………..………………..67 2.2 Pre-preparation of Electrodeposition……………….……………………...68 2.2.1 Electrode………………….……………………………………….……..68 2.2.1.1 Polycrystalline Graphite Electrode………………………………..68 2.2.1.2 Titanium Foil Electrode…………………………………………69 2.2.1.3 FTO Glass Electrode…………………………….……………69 2.2.2 Electrodeposition Bath……………………………….…………….69 2.3 Electrodeposition Process……………………………………………………70 2.3.1 Electrodeposition System - Three-electrode System…………………...70 2.3.2 Cathodic Deposition…………….………….…………………………71 2.4 Electrochemical Analyses and Textural Characterizations…………….….....72 2.4.1 Electrochemical Analyses………………………………………………72 2.4.2 Textural Characterizations………………..……………………………..73 2.4.2.1 X-ray Photoelectron Spectroscopy (XPS)……..…………………73 2.4.2.2 Scanning Electron Microscope (SEM)……………………………73 2.4.2.3 Transmission Electron Microscope (TEM)………………………..74 2.4.2.4 X-ray Diffraction (XRD)…………………………………………..75 2.4.2.5 Atomic Force Microscope (AFM)…………………………………..76 2.4.2.6 BET Isotherm……………………………………………………77 IV 2.4.3 Optical Analyses…………………………………………………………77 2.4.3.1 Ultraviolet-visible Spectroscopy (UV-vis)…………….…………..77 2.4.3.2 Raman Spectroscopy (Raman)…………………..……………..78 Chapter 3 The Growth Mechanism of Cathodically Deposited Porous TiO2 Films from a Novel Solution 3.1 Introduction and Motive….…………….……………………………………79 3.2 Results and Discussion.…………...…………………………………………80 3.2.1 Deposition Mechanism…………………………………………………..80 3.2.2 Material Characterizations…………………………………………….....86 3.3 Conclusion.…………....…………...…………………………………………89 Chapter 4 Morphology Control of Cathodically Deposited TiO2 Films 4.1 Introduction and Motive….…………….……………………………………90 4.2 Results and Discussion.…………...…………………………………………91 4.2.1 Effect of Cycle Number………….………..……………………………91 4.2.2 Effect of Deposition Temperature………….……..……………………94 4.3 Conclusion...…………....…………...……………………………………...102 V Chapter 5 Annealing Effects on Morphology and Crystallinity of TiO2 by Direct Heat-Treatment and Microwave-Assisted Hydrothermal Annealing 5.1 Introduction and Motive….…………….…………………………………..103 5.2 Results and Discussion.…………...………………………………………..104 5.2.1 Annealing Effect on Morphology and Crystallinity by DHT…..……104 5.2.2 Annealing Effect on Photocatalytic Application by DHT…..……….109 5.2.3 Annealing Effect on Crystallinity by MAHA…..……..….………….111 5.3 Conclusion…………....…………...………………..………………………..116 Chapter 6 Conclusions and Future Works…………………………...…117 References………………………………………………………………………..119

    References
    [1] Allen J. Bard and Larry R. Faulkner, Electrochemical Methods: Fundamentals
    and Applications 2th ed., John Wiley & Sons Inc, New York (2001)..
    [2] Ahmed El Goresy, Ming Chen, Leonid Dubrovinsky, Philippe Gillet, and Günther Graup,
    Science, 293, 5534, 1467 (2001).
    [3] Ahmed El Goresy, Ming Chen, Philippe Gillet, Leonid Dubrovinsky, Günther Graup
    and Rajeev Ahuja, Earth and Planetary Science Letters, 192, 4, 485 (2001).
    [4] A. Earnshaw and Norman Greenwood, Chemistry of the Elements 2th ed., Butterworth-Heinemann, Oxford (1997).
    [5] Brian O’Regan and Michael Grätzel, Nature, 353, 6346, 737 (1991).
    [6] Akira Fujishima, Japan Nanonet Bulletin, 44th issue, 1 (2005).
    [7] L. S. Dubrovinsky, N. A. Dubrovinskaia, V. Swamy, J. Muscat, N. M. Harrison, R. Ahuja, B. Holm, and Johansson, Nature, 410, 653 (2001).
    [8] Y. M. Chiang, D. Birnie III, and W. D. Kingery, Physical Ceramics, Wiley, New York (1997).
    [9] R. Könenkamp, Photoelectric Properties and Applications of Low-Mobility Semiconductors, Springer, Berlin (2000).
    [10] V. Subramanian, E. E. Wolf, and P. V. Kamat, J. Am. Chem. Soc., 126, 4943 (2004).
    [11] Yongfa Zhu, Li Zhang, Li Wang, Yan Fu, and Lili Cao, J. Mater. Chem., 11, 1864 (2001).
    [12] Byung Chang Kang, Soon Bo Lee, and Jin Hyo Boo, Surf. Coat. Technol., 131, 88 (2000).
    [13] Diana Mardare, M. Tasca, M. Delibas, and G.I. Rusu, Appl. Surf. Sci., 156, 200 (2000).
    [14] Y. Masuda, T. Sugiyama, H. Lin, W.S. Seo, and K. Koumoto, Thin Solid Films, 382, 153 (2001).
    [15] Hirotsugu Kishimoto, Koichi Takahama, Noboru Hashimoto, Yoshifumi Aoi, and Shigehito Deki, J. Mater. Chem., 8, 9, 2019 (1998).
    [16] Mikko Ritala and Markku Leskelä, Chem. Mater., 5, 1174 (1993).
    [17] Jian Jin, Lin Song Li, Yi Li, Xia Chen, Lin Jiang, Ying Ying Zhao, and Tie Jin Li, Thin Solid Films, 379, 218 (2000).
    [18] Dawei Gong, Craig A. Grimes, Oomman K. Varghese, Wenchong Hu, R.S. Singh, Zhi Chen, and Elizabeth C. Dickey, J. Mater. Res., 16, 12, 3331 (2001).
    [19] Yesudas Daniel Premchand, Thierry Djenizian, Florence Vacandio, and Philippe Knauth, Electrochem. Comm., 8, 1840 (2006).
    [20] G. E. F. Brewer, Am. Ceram. Soc. Bull., 51, 216 (1972)
    [21] Ladislav Kavan, Brian O’Regan, Andreas Kay, and Michael Grätzel, J. Electroanal. Chem., 346, 291 (1993).
    [22] J.I. Turyan and L.M. Maluka, Zh. Obshch. Khim., 53, 280 (1982).
    [23] J. Ragai and S.I. Selim, J. Colloid Interface Sci., 115, 139 (1987).
    [24] M.K. Nazeeruddin, P. Liska, J. Moser, N. Vlachopoulos, and M. Grätzel, Helv. Chim. Acta, 73, 1799 (1990).
    [25] Katrin Wessels, Armin Feldhoff, Michael Wark, Jiri Rathousky, and Torsten Oekermann, Electrochemical and Solid-State Letters, 9, 6, C96 (2006).
    [26] Katrin Wessels, Miyuki Maekawa, Jiri Rathousky, and Torsten Oekermann, Thin Solid Films, 515, 6497 (2007).
    [27] E. Michaelis, D. Wöhrle, J. Rathousky, and M. Wark, Thin Solid Films, 497, 163 (2006).
    [28] K.S. Choi, H. Lichtenegger, E.W. McFarland, and G.D. Stucky, J. Am. Chem. Soc., 124, 12402 (2002).
    [29] Y. Tan, E.M.P. Steinmiller, and K.S. Choi, Langmuir, 21, 9618 (2005).
    [30] T. Yoshida, T. Oekermann, K. Okabe, D. Schlettwein, K. Funabiki, and H. Minoura, Electrochemistry, 70, 470 (2002).
    [31] T. Pauporté, T. Yoshida, A. Goux, and D. Lincot, J. Electroanal. Chem., 534, 55
    (2002).
    [32] T. Yoshida, T. Pauporté, D. Lincot, T. Oekermann, and H. Minoura, J. Electrochem. Soc., 150, C608 (2003).
    [33] Katrin Wessels, Miyuki Maekawa, Jiri Rathousky, Tsukasa Yoshida, Michael Wark, and Torsten Oekermann, Micropor. Mesopor. Mater., 111, 55 (2008).
    [34] S. Sawatani, T. Yoshida, T. Ohya, T. Ban, Y. Takahashi, and H. Minoura, Electrochem. Solid-State Lett., 8, C69 (2005).
    [35] L. Gal-Or, I. Silberman, and R. Chaim, J. Electrochem. Soc., 138, 7, 1939 (1991).
    [36] R. Chaim, I. Silberman, and L. Gal-Or, J. Electrochem. Soc., 138, 7, 1942 (1991).
    [37] T. Yoshida, D. Komatsu, N. Shimokawa, and H. Minoura, Thin Solid Films, 451-452, 166 (2004).
    [38] James A. Cox and Anna Brajter, Electrochimica Acta, 24, 517 (1979).
    [39] Nobuaki Ogawa and Shigero Ikeda, Anal. Sci., 7, suppl, 1681 (1991).
    [40] C. Natarajan and G. Nogami, J. Electrochem. Soc., 143, 5, 1547 (1996).
    [41] I. Zhitomirsky, Mater. Lett., 33, 305 (1998).
    [42] Gianni Zotti, Gilberto Schiavon, and Sandro Zecchin, J. Electrochem. Soc., 146, 2, 637 (1999).
    [43] Kai Kamada, Maki Mukai, and Yasumichi Matsumoto, Electrochimica Acta, 47, 3309 (2002).
    [44] S. Karuppuchamy, K. Nonomura, T. Yoshida, T. Sugiura, and H. Minoura, Solid State Ionics, 151, 19 (2002).
    [45] S. Karuppuchamy, M. Iwasaki, and H. Minoura, Applied Surface Science, 253, 2924 (2006).
    [46] S. Karuppuchamy, J-M. Jeong, D.P. Amalnerkar, and H. Minoura, Vaccum, 80, 494 (2006).
    [47] S. Karuppuchamy, M. Iwasaki, and H. Minoura, Vacuum, 81, 708 (2007).
    [48] E. Haro-Poniatowski, R. Rodriguez-Talavera, M. De la Cruz Heredia, and O. Cano-Corona, J. Mater. Res., 9, 2102 (1994).
    [49] Z. Wang and X. Hu, Thin Solid Films, 352, 62 (1999).
    [50] Ana M. Peiró, Enric Brillas, José Peral, Xavier Doménech, and José A. Ayllón, J. Mater. Chem., 12, 2769 (2002).
    [51] C.D. Lokhande, Sun-ki Min, Kwang-Deog Jung, and OH-Shim Joo, J. Mater. Sce., 39, 6607 (2004).
    [52] Hongwei Yan, Yingling Yang, Zhengping Fu, Beifang Yang, Linsheng Xia, Yuandong Xu, Shenhquang Fu, and Fanqing Li, Chemistry Letters, 35, 8, 864 (2006).
    [53] Chi-Chang Hu and Yao-Huang Huang, J. Electrochem. Soc., 146, 7, 2465 (1999).
    [54] K. Rajendra Prasad and Norio Miura, Appl. Phys. Lett., 85, 18, 4199 (2004).
    [55] Mao-Sung Wu, Appl. Phys. Lett., 87, 153102 (2005).
    [56] M.J.N. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions 2th ed., National Association of Corrosion Engineers, Houston (1974).
    [57] D. F. Untereker and Stanley Bruckenstein, Anal. Chem., 44, 6, 1009 (1972).
    [58] Satoshi Hashimoto and Akihiro Tanaka, Surf. Interface Anal., 34, 262 (2002).
    [59] A. Hagfeldt and M. Gratzel, Acc. Chem. Res., 33, 269 (2000).
    [60] A. Fujishima, T.N. Rao, and D.A. Tryk, J. Photochem. Photobiol. C, 1, 1 (2000).
    [61] A.L. Linsebigler, G.Q. Lu, and J.T. Yates, Chem. Rev., 95, 735 (1995).
    [62] X. Chen and S.S. Mao, Chem. Rev., 107, 2891 (2007).
    [63] D. Li and Y.N. Xia, Nano Lett., 3, 555 (2003).
    [64] D. Gong, C.A. Grimes, and O.K. Varghese, J. Mater. Res., 16, 3331 (2001).
    [65] J.M. Macak, H. Tsuchiya, A. Ghicov, and P. Schmuki, Electrochem. Commun., 7, 1133 (2005).
    [66] G.H.A. Therese and P.V. Kamath, Chem. Mater., 12, 1195 (2000).
    [67] K. Wessels, M. Minnermann, J. Rathousky, M. Wark, and T. Oekermann, J. Phys. Chem. C, 112, 15122 (2008).
    [68] I. Zhitomirsky and L. GalOr, J. Eur. Ceram. Soc., 16, 819 (1996).
    [69] S.A. Kumar, P.H. Lo, and S.M. Chen, Nanotechnology, 19, 255501 (2008).
    [70] C.C. Hu and T.W. Tsou, Electrochem. Commun., 4, 105 (2002).
    [71] T.J. Wiseman, Inorganic white pigments, Chapter 4 in: G.D. Parfitt, K.S.W. Sing (Eds.) Characterization of Powder Surfaces, Academic, New York (1976).
    [72] H.B. Clark, P.R. Myers, and J.S. Long (Eds.), Treatise on coatings, vol. 3. Pigments, Marcel, Dekker, New York (1977).
    [73] K. Foger and J.R. Anderson, Appl. Catal., 23, 139 (1986).
    [74] D.M. MacArthur, J. Electrochem. Soc., 117, 422 (1970).
    [75] V. Gupta, T. Kusahara, H. Toyama, S. Gupta, and N. Miura, Electrochem. Comm., 9, 2315 (2007).
    [76] M. Izaki, T. Omi, Appl. Phys. Lett., 68, 2439 (1996).
    [77] L.F. Xu, Y. Guo, Q. Liao, J.P. Zhang, and D.S. Xu, J. Phys. Chem. B, 109, 13519 (2005).
    [78] A. Goux, T. Pauporte, J. Chivot, and D. Lincot, Electrochim. Acta, 50, 2239
    (2005).
    [79] Y. Ishikawa and Y. Matsumoto, Electrochim. Acta, 46, 2819 (2001).
    [80] S. Karuppuchamy, D.P. Amalnerkar, K. Yamaguchi, T. Yoshida, T. Sugiura, and H. Minoura, Chem. Lett., 1, 78 (2001).
    [81] S.T. Chang, I.C. Leu, and M.H. Hon, J. Crystal Growth, 273, 195 (2004).
    [82] C.C. Hu, C.C. Huang, and K.H. Chang, Electrochem. Comm., 11, 434 (2009).
    [83] M.D. Wiggins, M.C. Nelson, and C.R. Aita, J. Vac. Sci. Technol. A, 14, 772 (1996).
    [84] P. Löbl, M. Huppertz, and D. Mergel, Thin Solid Films, 251, 72 (1994).
    [85] L.-J. Meng, M. Andritschky, and M.P. dos Santos, Appl. Surf. Sci., 65-66, 235 (1993).
    [86] J.V. Grahn, M. Linder, and E. Fredriksson, J. Vac. Sci. Technol. A, 16, 2495 (1998).
    [87] Chang KH and Hu CC, Electrochem. Solid-State Lett., 7, A466 (2004).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE