研究生: |
陳耀明 Yaw-Ming Chen |
---|---|
論文名稱: |
TiN鍍膜微結構與性質之研究 Studies on the Microstructure and Property of TiN films |
指導教授: |
喻冀平博士
Dr. Ge-Ping Yu 黃嘉宏博士 Dr. Jia-Hong Huang |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2002 |
畢業學年度: | 90 |
語文別: | 中文 |
論文頁數: | 108 |
中文關鍵詞: | 氮化鈦 、優選方向 、孔隙度 、腐蝕 、電化學測試 |
外文關鍵詞: | Titanium nitride, preferred orientation, porosity, corrosion, electrochemical test |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究工作主要是探討中空陰極放電式離子鍍著系統(HCD ion-plating system,簡稱HCDIP)的基本操作參數例如溫度、偏壓、鍍膜功率等對TiN薄膜的優選方向、孔隙度、晶粒尺寸等微結構特性與表面鍍TiN的304不鏽鋼其耐腐蝕性的影響。
在實驗測試範圍內,TiN薄膜的優選方向、孔隙度、晶粒尺寸等微結構特性主要是受到溫度與離子撞擊強度的影響。TiN薄膜的優選方向隨著溫度與離子撞擊強度的不同而在(200)、(111)與(220)之間變化。高溫與低撞擊強度有助於(200)優選方向的形成,低溫與高撞擊強度則產生(220)優選方向,在這兩種較極端之間的鍍膜條件則形成(111)優選方向。提高鍍膜溫度或離子撞擊強度都可減低TiN薄膜的孔隙度。TiN薄膜的晶粒大體而言隨溫度增加而變大; 低溫下離子撞擊強度的影響不大; 高溫下隨撞擊強度的增加,晶粒尺寸會增大到一最大值,進一步提高離子撞擊強度反而使晶粒尺寸減小。鍍膜過程中離子撞擊與溫度的交互影響會形成具有特定微結構的TiN薄膜。大略而言,緻密的TiN薄膜其特徵是晶粒大,或是具有強烈(111)優選方向的小晶粒。
在腐蝕的研究上,電化學測試的結果顯示高溫與高偏壓有助於形成保護性較佳的TiN薄膜。大體而言,孔隙度較高的TiN薄膜其保護性較差,然而相同孔隙度的TiN薄膜其對304不鏽鋼基材的保護程度也可能有一個數量級的差異。表面鍍TiN的304不鏽鋼其腐蝕狀況,在不同階段可觀察到TiN薄膜上微裂縫的生成、微裂縫的延伸擴展與TiN薄膜的碎裂。
本論文也以整合性指標來呈現溫度、偏壓、鍍膜功率等主要鍍膜參數與TiN薄膜的優選方向與孔隙度之間的關聯。在測試條件範圍內,TiN薄膜的優選方向隨著溫度與離子撞擊強度的不同而在(200)、(111)與(220)之間變化的現象,可藉SE / T(K) 此一整合指標簡單而清楚的呈現。隨著SE / T(K) 指標的增加,TiN薄膜的優選方向由(200)轉變成(111)至(220)。孔隙度因鍍膜溫度或離子撞擊強度提高而減低的現象,可藉SE ×T指標呈現。隨著SE ×T 指標的增加,TiN孔隙度隨之減低。
在薄膜孔隙度與腐蝕的研究上,本論文由推導與實驗驗證提出新的孔隙度測量概念,此概念主要是以電化學測試的外加腐蝕電量來評估孔隙度測量的準確性。減低外加腐蝕電量可避免電化學測試過程造成TiN薄膜下的304不鏽鋼基材的過度腐蝕,而得到正確的孔隙度測量值; 在此情形下,本研究中所使用的各種電化學孔隙度測量方法都能得到一致的結果。電化學腐蝕測試中,TiN鍍膜試片其腐蝕量隨外加腐蝕電量的增加而變化的情形,可反應出TiN鍍膜試片其腐蝕的演變過程。
This work investigated the influence of the main process parameters on the preferred orientation, porosity, grain size and corrosion behavior of TiN films deposited by Hollow Cathode Discharge Ion-Plating system (HCDIP).
Within the investigated ranges, the preferred orientation, porosity, grain size of TiN films vary mainly with the change of deposition temperature and the ion bombardment, which is expressed with an index of SE. High deposition temperature together with low ion bombardment helps to deposition a (200)-oriented TiN coating. On the contrary, low deposition temperature and high ion bombardment lead to a TiN film with (220) preferred orientation. Between these two extreme deposition conditions, (111) is the preferred orientation of deposited TiN films. Increasing deposition temperature or the degree of ion bombardment can reduce the porosity of TiN films. The grain size of TiN films generally increases with increasing temperature. The influence of ion bombardment is more evident at high temperature. Grain size initially increases with ion bombardment but decreases at later stage. The relative importance of the effects induced by the temperature and the ion bombardment determines the specific microstructure characteristics of TiN coatings. Roughly speaking, the denser TiN coatings either have a large grain size or a highly (111)-preferred texture with smaller grain.
The electrochemical corrosion studies reveal that high deposition temperature and high negative bias voltage are beneficial to deposit TiN coatings with better corrosion resistance. Generally, TiN-coated stainless steels with high porosity have lower corrosion resistance. However, the variation of corrosion extent may be more than one order of magnitude for TiN coatings with the same level of porosity, especially at low level of porosity. At early stage of corrosion, micro-cracks appear on the TiN coating. The corrosion of substrate will be accelerated after the extension of the micro-cracks on TiN film.
In this study, two combined indexes were used to describe the correlation between the preferred orientation, the porosity of TiN films and the deposition temperature, bias voltage and deposition power. Within the investigated ranges, the preferred orientation of TiN films changes from (200) to (111) and then to (220) with the increasing SE / T(K) index. And the porosity of TiN coatings decreases with increasing SE ×T index.
This work also proposed a methodology, which is based on the corrosiveness of electrochemical test process, to measure the porosity of TiN coatings. By decreasing the corrosiveness of test process the problem of pinhole enlargement can be avoided and accurate measurement can be achieved. Based on this methodology, different electrochemical porosity test techniques can achieve a similar result of porosity measurements.
1. B.A.Movchan and A.V.Demchishin, Fiz.metal.metalloved. 28(4)(1969)p.83
2. J.R.Anderson, "Chemisorption and Reaction on Metallic Films", Academic Press.(1971)
3. J.A. Thornton, J.Vac.Sci.Technol. 11(4)(1974)p.666
4. J.A. Thornton, Ann.Rev.Mater.Sci.(1977)p.239
5. H.T.G.Hentzell, C.R.M.Grovenor and D.A.Smith, J.Vac.Sci.Technol. A2(2)(1984)p.218
6. C.R.M.Grovenor, H.T.G.Hentzell and D.A.Smith, Acta metall 32(5) (1984) p.773
7. D.A. Smith, Mat. Res. Soc. Symp. Proc. 317 (1994)p.401
8. R.Messier, J.Vac.Sci.Technol. A2(2)(1984)p.500
9. J.Musil, Surf.Coat.Technol. 60(1993)p.484
10. J.Musil, Surf.Coat.Technol. 43/44(1990)p.259
11. J.E. Yehoda, J.Vac.Sci.Technol. A 6(3)(1988)p.1631
12. S.J.Bull, Surf.Coat.Technol. 54/55(1992)p.173
13. I. Petrov, Applied Physics Letter 63(1)5 (1993) p.36
14. S. Benhenda, Applied Surface Science 40(1989)p.121
15. I. Petrov, L.Hultman and J.E.Sundgren, J. Vac. Sci. Technol. A 10(2)(1992)p.265
16. I. Petrov, L. Hultman, U. Helmersson, J.E. Sundgren and J.E. Greene, Thin Solid Film 169(1989)p.299
17. L. Hultman, G. Hakansson,U. Wahlstrom, J.E. Sundgren, I. Petrov, F. Adibi and J.E. Greene, Thin Solid Film 205(1991)p.153
18. M.K.Hibbs , B. O. Johansson,J.E. Sundgren, and U. Helmersson, Thin Solid Film 122(1984)p.115
19. Y.Enomoto and K.Yamamaka, Thin Solid Film 86(1981)L201
20. B.Pecz, N.Frangis, S.Logothetidis, I.Alexandrou, P.B.Barna and J.Stoemenos, Thin Solid Films 268(1995)p.57
21. V. Poulek, C.Quaeyhaegens, G.Knuyt, L.Stals, and V. Fagard, Surf.Coat.Technol. 60(1993)p.480
22. L. Hultman, Thin Solid Film 124(1985)p.163
23. U. Helmersson, J. Vac Sci Technol. A4(1986)p.500
24. J.E.Sundgren, J. Vac Sci Technol. A1(1983)p.301
25. J.E. Sundgren , B.O.Johansson, S.E.Karlsson, and H.T.G.Hentzell, Thin Solid Films 105(1983)p.367
26. K.W.Whang and Y.W.Seo, J.Vac.Sci.Technol. A 11(1993)p.1496
27. W.Ensinger and B.Rauschenbach, Nucl.Instr.and Meth. B80/81(1993)p.1409
28. I. Petrov et al, Appl.Phys.Lett. 63(1993)p.36
29. J.E. Sundgren, B.O.Johansson, H.T.G.Hentzell and S.E.Karlsson, Thin Solid Films 105(1983)p.385
30. J.Pelleg, L.Z.Zevin and S.Lungo, Thin Solid Films 197(1991)p.117
31. G.Knuyt, C. Quaeyhaegens, C.; J.D'Haenand L.M.Stals, Surf.Coat.Technol. 74/75(1995)p.604
32. L.Hultman and J.E.Sundgren, J. Vac. Sci.Technol. A 7(3)(1989)p.1187
33. L.Hultman , J.E.Sundgren and J.E.Greene, J. Appl.Phys. 66 (1989)p.536
34. U.C.Oh and J. H. Je, J. Appl. Phys. 74(3)(1993)p.1692
35. U.C.Oh, J. H. Je and J.Y. Lee, J.Mater.Res. 10(3)(1995)p.634
36. J.H.Je, D.Y. Noh,H. K.Kim and K.S.Liang, Mat.Res.Soc.Symp.Proc. 375(1995)p.3
37. D.W.Hoffman, Thin Solid Films 107 (1983)p.353
38. .H.H.Yang, J.H.Je and K.B.Lee, Journal of Materials Science Letters 14 (1995)p.1635
39. Dobrev, Thin Solid Films 92(1982)p.41
40. M. Kiuchi, Jpn. J. Appl. Phys.29(1990)p.2059
41. Y.Andoh, K.Ogata,H.Yamaki and S.Sakai, Nucl. Instr.and Meth. B39(1989)p.158
42. .M.Satou, K.Fujii, M.Kiuchi and F.Fujimoto, Nucl.Instr.and Meth. B39(1989)p.166
43. M. Kiuchi, M.Tomita,K.Fujii, M.Satou and R. Shimizu, Jpn.J. Appl. Phys.26(1987)L938
44. M. Kiuchi, Nucl.Instr.and Meth.B80/B81(1993)p.1343
45. H.Kheyrandish, J.Vac.Sci.Technol.A 12(1994)p.2723
46. M. Kiuchi, Applied Surface Science 60/61(1992)p.760
47. W. Ensinger, M. Kiuchi and M.Satou, Surf.Coat.Technol. 66(1994)p.313
48. I.M. Notter and D.R. Gabe, Corrosion Reviews 10(3-4)(1992)p.217
49. J.R.Roos, J.P.Celis and C. Fan, J.Electrochem. Soc. V137(4) (1990)p.1096
50. B.Elsener, A.Rota and H.Bohni, Materials Science Forum 44/45 (1989)p.29
51. J.Piippo, B.Elsener and H.Bohni, Materials Science Forum 111/112(1992)p.219
52. J.Aromaa , H.Ronkainen, A.Mahiout , S.P.Hannula, A.Leyland, A.Matthews, B.Matthes and E.Broszeit, Materials Science and Engineering A140(1991)p.722
53. I.Yu. Konyashin and T.V. Chukalovskaya, Surf.Coat.Technol. 88(1996) p.5
54. T. Fukai and K. Matsumoto, Corrosion Engineering 41(1992)p.903
55. H.Uchida, S.Inoue, Y. Nakano and K. Koterazawa, Corrosion Engineering 44 (1995)p.413
56. T. Okamoto, M. Fukushima and K. Takizawa, Corrosion Engineering 45 (1996)p.425
57. Y. Arata, A. Ohmori and C.J. Li, Thin Solid Films 156(1988) p.315
58. T. Haruna and T. Shibata, ISIJ International 35(5) (1995)p.519
59. J.P.Celis, D.Drees, E.Maesen and J.R.Roos, Thin Solid Films 224(1993) p.58
60. C. Kerr, D. Barker and F. Walsh, Transactions of the Institute of Metal Finishing 75(2)(1997)p. 81
61. A.H. Nahle, C. Kerr, D.Barker and F. C.Walsh, Transactions of the Institute of Metal Finishing 76 (1) (1998)p.29
62. G.W. Reade, C. Kerr, D. Barker and F. C.Walsh, Transactions of the Institute of Metal Finishing 76 (4) (1998) p.149
63. U.K. Wiiala, I.M. Penttinen, A.S. Korhonen, J. Aromaa and E. Ristolainen, Surf.Coat.Technol. 41(1990)p.191
64. H.A.Jehn and M.E. Baumgartner, Surf.Coat.Technol. 54/55(1992)p.108
65. S.S.Nandra, F.G.Wilson and C.D.DesForges, Thin Solid Films 107(1983)p.335
66. B.Enders, S.Kraub,K.Baba and G.K.Wolf, Surf.Coat.Technol.74/75(1995)p.959
67. K.Baba and R.Hatada, Surf.Coat.Technol. 66(1994)p.368
68. K.H.Muller, J.Appl. Phys. 58(1985)p.2573
69. C.Fang, Ph.D. Thesis, Columbia University (1992)
70. W.Ensinger, Surf.Coat.Technol. 65(1994)p.90
71. Kado, R.Makabe, S.Mochizuki, S.Nakajima and M.Araki, Corrosion Engineering 36(1987)p.503
72. E. Vera and G.K. Wolf, Nucl. Instr.and Meth. B 148(1999)p.917
73. W. Ensinger, Surf.Coat.Technol. 80(1996)p.35
74. J.R.Morley and H.R.Smith, J.Vac.Sci.Technol. 9(6)(1972)p.1377
75. C.F.Ai , J.Y.Wu and C.S.Lee, Vacuum 44(2)(1993)p.99
76. F.S. Shieu,Y.C. Sung, L.H. Cheng, J.H. Huang and G.P.Yu, Corrosion Sci. 39(5)(1997)p.893
77. F.S. Shieu, L.H. Cheng, Y.C. Sung, J.H. Huang and G.P.Yu, J. Vac. Sci. Tech A. 15(4) (1997)p.2318
78. F.S. Shieu, L.H. Cheng, Y.C. Sung, J.H. Huang and G.P.Yu, Mater.Chem.Phys. 50(3) (1997)p.248
79. F.S. Shieu,L.H. Cheng, Y.C. Sung, J.H. Huang and G.P. Yu, Thin Solid Films 334(1998)p. 125
80. W.L. Pan, G.P. Yu and J.H. Huang, Surf.Coat.Technol. 110 (1998)p.111
81. B.F. Chen, W.L. Pan, J. Hwang G.P. Yu and J.H. Huang, Surf.Coat.Technol.. 111 (1999)p.16
82. J.H Huang, Y.P. Tsai and G.P. Yu, Thin Solid Films 355/356 (1999) p.440
83. J.Y. Chen,G.P. Yu and J.H. Huang, Mater. Chem. Phys. 65 (2000)p.310
84. W.J. Chou, G.P. Yu and J.H. Huang, Surf.Coat.Technol. 140 (2001) p.206
85. W.J. Chou, G.P. Yu and J.H. Huang, Corrosion Sci. 43 (2001) p.2023
86. D.S. Rickerby, A.M. Jones and B.A. Bellamy, Surf.Coat.Technol. 37(1989)p.111
87. T. Fukai and K. Matsumoto, Corrosion Engineering 41 (1992)p. 903
88. H.Uchida, S.Inoue, Y. Nakano and K. Koterazawa, Corrosion Engineering 44 413 (1995)
89. T. Okamoto, M. Fukushima and K. Takizawa, Corrosion Engineering 45(1996) p.425
90. B.Elsener, A.Rota and H.Bohni, Materials Science Forum 44/45 (1989)p.29
91. Th.H. de Keijser, J.I.Langford, E.J.Mittemeijer and A.B.P.Vogels, J.Appl.Cryst. 15(1982)p.308
92. H.P.Klug and L.E.Alexander, "X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials", Wiley-Interscience, New York(1974) p. 625
93. J.H. Huang, Y.P. Tsai and G.P. Yu, Thin Solid Films 355/356(1999)p.440
94. L. Combadiere and J. Machet, Surf.Coat.Technol. 88 (1996) p.17
95. W.Ensinger, Surf.Coat.Technol.65(1994)p.9
96. J.P.Zhao, X.Wang, Z.Y.Chen, A.Q.Yang, T.S.Shi and X.H.Liu, J. Phys. D:Appl. Phys. 30(1997)p.5
97. J. I. Jeong, J.H. Hong, J.S. Kang, H.J. Shin and Y.P. Lee, J. Vac. Sci. Technol. A9(5) (1991)p.2618
98. L. De Schepper, M.D Olieslaeger, G. Knuyt and L.M. Stals, Thin Solid Films 173(1989)p.199
99. K.H.Muller, J.Appl.Phys. 58(1985)p.2573
100. S.Aisenberg and R.Chabot, J.Vac.Sci.Technol.10(1973)p.104
101. Carter,G, J. Phys. D: applied Physics 27(5) (1994)p.1046