簡易檢索 / 詳目顯示

研究生: 陳威成
論文名稱: 綠茶兒茶素保護心臟抵抗氧化壓力傷害之蛋白質體學研究
Green Tea Catechins Protect Cardiac Cells against the Oxidative Stress Injury: A Proteomics Study
指導教授: 徐邦達
劉英明
口試委員: 徐邦達
劉英明
詹鴻霖
簡麗鳳
汪海宴
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2014
畢業學年度: 103
語文別: 英文
論文頁數: 110
中文關鍵詞: 氧化壓力蛋白質體學
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 研究指出表沒食子兒茶素沒食子酸酯(EGCG)具有抗氧化的能力且能降低氧化壓力對心肌細胞所造成的傷害。雖然許多研究證實EGCG具有保護心臟的效果,但EGCG在細胞膜上的作用機制並不是十分地清楚。在本研究中,我們建立兩種實驗模式:一個是利用雙氧水使H9c2大鼠胚胎心肌細胞產生氧化壓力來模擬缺血再灌流的傷害;另一個則是將大鼠的左前降支冠狀動脈結紮建立心肌梗塞的動物模式。H9c2細胞受到雙氧水的傷害後會造成細胞存活率下降且造成細胞內鈣離子過量與活性氧化物(ROS)的增加。而在事先處理EGCG 30分鐘後則能減緩此傷害。EGCG也能透過活化肝糖合成酶激酶-3β(GSK-3β)/β-連環蛋白(β-catenin)/細胞週期蛋白D1(cyclin D1)的訊息傳遞路徑來取消雙氧水所造成的細胞週期停滯在G1-S階段。為了要了解EGCG在細胞膜表面的作用機制,我們將綠螢光蛋白(EGFP)異位地表現在H9c2細胞中。在表現EGFP的細胞中,隨著EGCG劑量的增加能誘導螢光強度發生變化,這表示EGCG的訊號傳遞能誘發EGFP鄰近的蛋白發生改變。透過蛋白鑑定的結果顯示與EGFP形成的複合體有67kD層黏連蛋白受體、窖蛋白-1與-3、β-肌動蛋白、肌凝蛋白-9和波形蛋白。透過表現EGFP的細胞與心肌梗塞的動物模式,我們發現窖蛋白參與EGCG保護心臟細胞的作用機轉。另外,利用蛋白質體分析鑑定出H9c2細胞在正常情況下、暴露在400μM的雙氧水30分鐘和事先處理20 μM EGCG 30分鐘再處理400μM的雙氧水30分鐘後蛋白間表現的差異。根據我們挑點的條件,共找出八個蛋白,分別與能量代謝、粒線體電子傳遞、氧化還原調節、訊息傳遞與RNA結合有關。此外,事先處理EGCG或GSK-3β抑制劑(SB216763)能減輕雙氧水所誘導的傷害,包括細胞存活率、磷酸化Akt(S473)和GSK-3β(S9)與cyclin D1蛋白的表現量。綜合來說,在雙氧水所誘導的氧化效應下,EGCG能增加AKT的活性是透過調節PIP3的合成,進而使導致心肌損傷的GSK-3β蛋白失去活性。


    Chapter One: General Introduction 1 1.1 Green tea extracts 3 1.2 Oxidative stress 5 1.3 Calcium signaling in cardiac cells 7 1.4 Caveolins and cardiovascular disease 9 1.5 The aims of this thesis 11 Chapter Two: Materials and Methods 15 2.1 Materials 15 2.1.1 Chemicals and reagents 15 2.1.2 Antibodies 15 2.2 Cell culture 16 2.3 EGCG and/or H2O2 treatments and cell viability assay 16 2.4 Determination of cell cycle phase 17 2.5 Fluorescence measurements of EGFP expression in H9c2 cells 18 2.6 Immunoprecipitation and immunoblotting 18 2.7 Protein separation by 2-DE and isoelectric focusing (IEF) for IP 19 2.8 Semi-quantitative RT-PCR 20 2.9 Real-time polymerase chain reaction 21 2.10 Determination of cellular Ca2+ levels 22 2.11 Measurement of intracellular ROS generation by fluorescence spectrophotometry 23 2.12 Sample preparation and two-dimensional electrophoresis 24 2.13 Gels staining, image analysis and MALDI-TOF MS analysis 24 2.14 Western blot analysis 25 2.15 Measurements of ALDH activity 26 2.16 A rat model of myocardial ischemia with left anterior descending (LAD) ligation 27 2.16.1 Chemicals 27 2.16.2 Experimental animals 27 2.16.3 Left coronary artery ligation 28 2.17 Statistical analysis 29 Chapter Three: Epigallocatechin-3-gallate-mediated cardioprotection by Akt/GSK-3β/caveolin signaling in H9c2 rat cardiomyoblasts 30 3.1 Abstract 30 3.2 Introduction 32 3.3 Results 34 3.3.1 EGCG cardio-protective effects on cell viability in H2O2-treated H9c2 cells 34 3.3.2 Effects of EGCG and H2O2 on the cell cycle, pGSK-3β, GSK-3β, β-catenin, and cyclin D1 protein levels in H9c2 cells 36 3.3.3 EGCG-induced fluorescence changes in intact Triton X-100-soluble and insoluble fractions of EGFP-expressing H9c2 cells 41 3.3.4 Effects of H2O2 and EGCG on the expression of Cavs in H9c2 cells 44 3.3.5 Effects of LAD ligation and GTPs treatment on the protein content of LR and Cav-1 and Cav-3 in rat myocardium 47 3.3.6 Effects of H2O2 and EGCG on Akt/GSK-3β survival pathway in H9c2 cells 49 3.4 Discussion 52 3.5 Conclusions 55 Chapter Four: Molecular identification for epigallocatechin-3-gallate-mediated antioxidant intervention on the H2O2-induced oxidative stress in H9c2 rat cardiomyoblasts 57 4.1 Abstract 57 4.2 Introduction 59 4.3 Results 61 4.3.1 The proteomic strategy used to evaluate EGCG-mediated cardioprotection against H2O2-induced oxidative stress in H9c2 rat cardiomyoblasts 61 4.3.2 2-DE analysis on differential protein expression in control, and H2O2-treated H9c2 cells with and without EGCG pretreatment 64 4.3.3 Effects of H2O2 and EGCG on oxidative stress associated with cellular metabolism 71 4.3.4 Effects of H2O2 and EGCG on PI3K/Akt/GSK3β signaling pathway 77 4.3.5 Effects of H2O2 and EGCG on the expression of RNA-binding proteins 83 4.4 Discussion 85 4.5 Conclusion 88 Chapter Five: Molecular targets for anti-oxidative protection of green tea polyphenols against myocardial ischemic injury 90 Chapter Six: General Conclusions and Future Directions 97 References 100

    1. Global status report on noncommunicable disease 2010. Geneva, World Health Organization, 2011.
    2. Lefer, D.J. and D.N. Granger, Oxidative stress and cardiac disease. Am J Med, 2000. 109(4): p. 315-23.
    3. Lucchesi, B.R., Myocardial ischemia, reperfusion and free radical injury. Am J Cardiol, 1990. 65(19): p. 14I-23I.
    4. Arts, I.C., et al., Catechin intake might explain the inverse relation between tea consumption and ischemic heart disease: the Zutphen Elderly Study. Am J Clin Nutr, 2001. 74(2): p. 227-32.
    5. Mukamal, K.J., et al., Tea consumption and mortality after acute myocardial infarction. Circulation, 2002. 105(21): p. 2476-81.
    6. Chevallet, M., et al., New zwitterionic detergents improve the analysis of membrane proteins by two-dimensional electrophoresis. Electrophoresis, 1998. 19(11): p. 1901-9.
    7. Kuo, K.L., et al., Comparative studies on the hypolipidemic and growth suppressive effects of oolong, black, pu-erh, and green tea leaves in rats. J Agric Food Chem, 2005. 53(2): p. 480-9.
    8. Rietveld, A. and S. Wiseman, Antioxidant effects of tea: evidence from human clinical trials. J Nutr, 2003. 133(10): p. 3285S-3292S.
    9. Crespy, V. and G. Williamson, A review of the health effects of green tea catechins in in vivo animal models. J Nutr, 2004. 134(12 Suppl): p. 3431S-3440S.
    10. Lin, Y.S., et al., Factors affecting the levels of tea polyphenols and caffeine in tea leaves. J Agric Food Chem, 2003. 51(7): p. 1864-73.
    11. Moore, R.J., K.G. Jackson, and A.M. Minihane, Green tea (Camellia sinensis) catechins and vascular function. Br J Nutr, 2009. 102(12): p. 1790-802.
    12. Miyazawa, T., Absorption, metabolism and antioxidative effects of tea catechin in humans. Biofactors, 2000. 13(1-4): p. 55-9.
    13. Maeda-Yamamoto, M., K. Ema, and I. Shibuichi, In vitro and in vivo anti-allergic effects of 'benifuuki' green tea containing O-methylated catechin and ginger extract enhancement. Cytotechnology, 2007. 55(2-3): p. 135-42.
    14. Arce, L., A. Rios, and M. Valcarcel, Determination of anti-carcinogenic polyphenols present in green tea using capillary electrophoresis coupled to a flow injection system. J Chromatogr A, 1998. 827(1): p. 113-20.
    15. Antonello, M., et al., Prevention of hypertension, cardiovascular damage and endothelial dysfunction with green tea extracts. Am J Hypertens, 2007. 20(12): p. 1321-8.
    16. Pang, J.Y., et al., Green tea polyphenol, epigallocatechin-3-gallate, possesses the antiviral activity necessary to fight against the hepatitis B virus replication in vitro. J Zhejiang Univ Sci B, 2014. 15(6): p. 533-9.
    17. Lin, Y.T., et al., Green tea phenolic epicatechins inhibit hepatitis C virus replication via cycloxygenase-2 and attenuate virus-induced inflammation. PLoS One, 2013. 8(1): p. e54466.
    18. Bursill, C.A., M. Abbey, and P.D. Roach, A green tea extract lowers plasma cholesterol by inhibiting cholesterol synthesis and upregulating the LDL receptor in the cholesterol-fed rabbit. Atherosclerosis, 2007. 193(1): p. 86-93.
    19. Cavet, M.E., et al., Anti-inflammatory and anti-oxidative effects of the green tea polyphenol epigallocatechin gallate in human corneal epithelial cells. Mol Vis, 2011. 17: p. 533-42.
    20. Santesso, N. and E. Manheimer, A summary of a cochrane review: green and black tea for the primary prevention of cardiovascular disease. Glob Adv Health Med, 2014. 3(2): p. 66-7.
    21. Hartley, L., et al., Green and black tea for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev, 2013. 6: p. CD009934.
    22. Imai, K. and K. Nakachi, Cross sectional study of effects of drinking green tea on cardiovascular and liver diseases. BMJ, 1995. 310(6981): p. 693-6.
    23. Mineharu, Y., et al., Coffee, green tea, black tea and oolong tea consumption and risk of mortality from cardiovascular disease in Japanese men and women. J Epidemiol Community Health, 2011. 65(3): p. 230-40.
    24. Paquay, J.B., et al., Protection against nitric oxide toxicity by tea. J Agric Food Chem, 2000. 48(11): p. 5768-72.
    25. Sonee, M., et al., The soy isoflavone, genistein, protects human cortical neuronal cells from oxidative stress. Neurotoxicology, 2004. 25(5): p. 885-91.
    26. Murakami, C., et al., Effect of tea catechins on cellular lipid peroxidation and cytotoxicity in HepG2 cells. Biosci Biotechnol Biochem, 2002. 66(7): p. 1559-62.
    27. Schewe, T., Y. Steffen, and H. Sies, How do dietary flavanols improve vascular function? A position paper. Arch Biochem Biophys, 2008. 476(2): p. 102-6.
    28. Ferrari, R., et al., Role of oxygen free radicals in ischemic and reperfused myocardium. Am J Clin Nutr, 1991. 53(1 Suppl): p. 215S-222S.
    29. Venardos, K.M., et al., Myocardial ischemia-reperfusion injury, antioxidant enzyme systems, and selenium: a review. Curr Med Chem, 2007. 14(14): p. 1539-49.
    30. Giorgio, M., et al., Hydrogen peroxide: a metabolic by-product or a common mediator of ageing signals? Nat Rev Mol Cell Biol, 2007. 8(9): p. 722-8.
    31. Valko, M., et al., Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact, 2006. 160(1): p. 1-40.
    32. Tsutsui, H., S. Kinugawa, and S. Matsushima, Mitochondrial oxidative stress and dysfunction in myocardial remodelling. Cardiovasc Res, 2009. 81(3): p. 449-56.
    33. Ridnour, L.A., et al., The chemistry of nitrosative stress induced by nitric oxide and reactive nitrogen oxide species. Putting perspective on stressful biological situations. Biol Chem, 2004. 385(1): p. 1-10.
    34. Vassalle, C., et al., An oxidative stress score as a combined measure of the pro-oxidant and anti-oxidant counterparts in patients with coronary artery disease. Clin Biochem, 2008. 41(14-15): p. 1162-7.
    35. Droge, W., Free radicals in the physiological control of cell function. Physiol Rev, 2002. 82(1): p. 47-95.
    36. Kovacic, P., et al., Mechanism of mitochondrial uncouplers, inhibitors, and toxins: focus on electron transfer, free radicals, and structure-activity relationships. Curr Med Chem, 2005. 12(22): p. 2601-23.
    37. Bodrova, M.E., et al., Cyclosporin A-sensitive decrease in the transmembrane potential across the inner membrane of liver mitochondria induced by low concentrations of fatty acids and Ca2+. Biochemistry (Mosc), 2003. 68(4): p. 391-8.
    38. Manea, A., et al., AP-1-dependent transcriptional regulation of NADPH oxidase in human aortic smooth muscle cells: role of p22phox subunit. Arterioscler Thromb Vasc Biol, 2008. 28(5): p. 878-85.
    39. Zhao, W., et al., Cardiac oxidative stress and remodeling following infarction: role of NADPH oxidase. Cardiovasc Pathol, 2009. 18(3): p. 156-66.
    40. Borges, F., E. Fernandes, and F. Roleira, Progress towards the discovery of xanthine oxidase inhibitors. Curr Med Chem, 2002. 9(2): p. 195-217.
    41. Vorbach, C., R. Harrison, and M.R. Capecchi, Xanthine oxidoreductase is central to the evolution and function of the innate immune system. Trends Immunol, 2003. 24(9): p. 512-7.
    42. Scotland, R.S., et al., An endothelium-derived hyperpolarizing factor-like factor moderates myogenic constriction of mesenteric resistance arteries in the absence of endothelial nitric oxide synthase-derived nitric oxide. Hypertension, 2001. 38(4): p. 833-9.
    43. Case, R.M., et al., Evolution of calcium homeostasis: from birth of the first cell to an omnipresent signalling system. Cell Calcium, 2007. 42(4-5): p. 345-50.
    44. Wray, S. and T. Burdyga, Sarcoplasmic reticulum function in smooth muscle. Physiol Rev, 2010. 90(1): p. 113-78.
    45. Bobe, R., et al., How many Ca(2)+ATPase isoforms are expressed in a cell type? A growing family of membrane proteins illustrated by studies in platelets. Platelets, 2005. 16(3-4): p. 133-50.
    46. Parekh, A.B. and J.W. Putney, Jr., Store-operated calcium channels. Physiol Rev, 2005. 85(2): p. 757-810.
    47. Meldolesi, J. and T. Pozzan, The endoplasmic reticulum Ca2+ store: a view from the lumen. Trends Biochem Sci, 1998. 23(1): p. 10-4.
    48. Strehler, E.E. and D.A. Zacharias, Role of alternative splicing in generating isoform diversity among plasma membrane calcium pumps. Physiol Rev, 2001. 81(1): p. 21-50.
    49. Blaustein, M.P. and W.J. Lederer, Sodium/calcium exchange: its physiological implications. Physiol Rev, 1999. 79(3): p. 763-854.
    50. Crow, M.T., et al., The mitochondrial death pathway and cardiac myocyte apoptosis. Circ Res, 2004. 95(10): p. 957-70.
    51. Barta, J., et al., Calpain-1-sensitive myofibrillar proteins of the human myocardium. Mol Cell Biochem, 2005. 278(1-2): p. 1-8.
    52. Bolli, R. and E. Marban, Molecular and cellular mechanisms of myocardial stunning. Physiol Rev, 1999. 79(2): p. 609-34.
    53. Chen, M., et al., Bid is cleaved by calpain to an active fragment in vitro and during myocardial ischemia/reperfusion. J Biol Chem, 2001. 276(33): p. 30724-8.
    54. Simons, K. and E. Ikonen, Functional rafts in cell membranes. Nature, 1997. 387(6633): p. 569-72.
    55. Hill, M.M., et al., PTRF-Cavin, a conserved cytoplasmic protein required for caveola formation and function. Cell, 2008. 132(1): p. 113-24.
    56. Vinten, J., et al., Identification of a major protein on the cytosolic face of caveolae. Biochim Biophys Acta, 2005. 1717(1): p. 34-40.
    57. Insel, P.A. and H.H. Patel, Membrane rafts and caveolae in cardiovascular signaling. Curr Opin Nephrol Hypertens, 2009. 18(1): p. 50-6.
    58. Williams, T.M. and M.P. Lisanti, The caveolin proteins. Genome Biol, 2004. 5(3): p. 214.
    59. Parolini, I., et al., Expression of caveolin-1 is required for the transport of caveolin-2 to the plasma membrane. Retention of caveolin-2 at the level of the golgi complex. J Biol Chem, 1999. 274(36): p. 25718-25.
    60. Song, K.S., et al., Expression of caveolin-3 in skeletal, cardiac, and smooth muscle cells. Caveolin-3 is a component of the sarcolemma and co-fractionates with dystrophin and dystrophin-associated glycoproteins. J Biol Chem, 1996. 271(25): p. 15160-5.
    61. Minetti, C., et al., Impairment of caveolae formation and T-system disorganization in human muscular dystrophy with caveolin-3 deficiency. Am J Pathol, 2002. 160(1): p. 265-70.
    62. Hardin, C.D. and J. Vallejo, Caveolins in vascular smooth muscle: form organizing function. Cardiovasc Res, 2006. 69(4): p. 808-15.
    63. Kamishima, T., et al., Caveolin-1 and caveolin-3 regulate Ca2+ homeostasis of single smooth muscle cells from rat cerebral resistance arteries. Am J Physiol Heart Circ Physiol, 2007. 293(1): p. H204-14.
    64. Jasmin, J.F., et al., Caveolin-1 deficiency exacerbates cardiac dysfunction and reduces survival in mice with myocardial infarction. Am J Physiol Heart Circ Physiol, 2011. 300(4): p. H1274-81.
    65. Head, B.P., et al., Caveolin-1 expression is essential for N-methyl-D-aspartate receptor-mediated Src and extracellular signal-regulated kinase 1/2 activation and protection of primary neurons from ischemic cell death. FASEB J, 2008. 22(3): p. 828-40.
    66. Das, M., et al., Caveolin induces cardioprotection through epigenetic regulation. J Cell Mol Med, 2012. 16(4): p. 888-95.
    67. Tsutsumi, Y.M., et al., Cardiac-specific overexpression of caveolin-3 induces endogenous cardiac protection by mimicking ischemic preconditioning. Circulation, 2008. 118(19): p. 1979-88.
    68. Hausenloy, D.J. and D.M. Yellon, Survival kinases in ischemic preconditioning and postconditioning. Cardiovasc Res, 2006. 70(2): p. 240-53.
    69. Lin, J.K. and S.Y. Lin-Shiau, Mechanisms of hypolipidemic and anti-obesity effects of tea and tea polyphenols. Mol Nutr Food Res, 2006. 50(2): p. 211-7.
    70. Brieger, K., et al., Reactive oxygen species: from health to disease. Swiss Med Wkly, 2012. 142: p. w13659.
    71. Bers, D.M., Calcium cycling and signaling in cardiac myocytes. Annu Rev Physiol, 2008. 70: p. 23-49.
    72. Shieh, D.B., et al., Effects of genistein on beta-catenin signaling and subcellular distribution of actin-binding proteins in human umbilical CD105-positive stromal cells. J Cell Physiol, 2010. 223(2): p. 423-34.
    73. Hsu, Y.C. and Y.M. Liou, The anti-cancer effects of (-)-epigallocatechin-3-gallate on the signaling pathways associated with membrane receptors in MCF-7 cells. J Cell Physiol, 2011. 226(10): p. 2721-30.
    74. Grynkiewicz, G., M. Poenie, and R.Y. Tsien, A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem, 1985. 260(6): p. 3440-50.
    75. Maciel, E.N., A.E. Vercesi, and R.F. Castilho, Oxidative stress in Ca(2+)-induced membrane permeability transition in brain mitochondria. J Neurochem, 2001. 79(6): p. 1237-45.
    76. Li, S.Y., et al., Attenuation of acetaldehyde-induced cell injury by overexpression of aldehyde dehydrogenase-2 (ALDH2) transgene in human cardiac myocytes: role of MAP kinase signaling. J Mol Cell Cardiol, 2006. 40(2): p. 283-94.
    77. Chen, L., et al., Absorption, distribution, elimination of tea polyphenols in rats. Drug Metab Dispos, 1997. 25(9): p. 1045-50.
    78. Hsieh, S.R., et al., Green tea extract protects rats against myocardial infarction associated with left anterior descending coronary artery ligation. Pflugers Arch, 2009. 458(4): p. 631-42.
    79. Stangl, V., et al., Molecular targets of tea polyphenols in the cardiovascular system. Cardiovasc Res, 2007. 73(2): p. 348-58.
    80. Mak, J.C., Potential role of green tea catechins in various disease therapies: progress and promise. Clin Exp Pharmacol Physiol, 2012. 39(3): p. 265-73.
    81. Liou, Y.M., et al., Green tea extract given before regional myocardial ischemia-reperfusion in rats improves myocardial contractility by attenuating calcium overload. Pflugers Arch, 2010. 460(6): p. 1003-14.
    82. Dreger, H., et al., Characteristics of catechin- and theaflavin-mediated cardioprotection. Exp Biol Med (Maywood), 2008. 233(4): p. 427-33.
    83. Li, D., et al., Identification of a PKCepsilon-dependent regulation of myocardial contraction by epicatechin-3-gallate. Am J Physiol Heart Circ Physiol, 2008. 294(1): p. H345-53.
    84. Lorenz, M., et al., Positive inotropic effects of epigallocatechin-3-gallate (EGCG) involve activation of Na+/H+ and Na+/Ca2+ exchangers. Eur J Heart Fail, 2008. 10(5): p. 439-45.
    85. Hirai, M., et al., Protective effects of EGCg or GCg, a green tea catechin epimer, against postischemic myocardial dysfunction in guinea-pig hearts. Life Sci, 2007. 80(11): p. 1020-32.
    86. Townsend, P.A., et al., Epigallocatechin-3-gallate inhibits STAT-1 activation and protects cardiac myocytes from ischemia/reperfusion-induced apoptosis. FASEB J, 2004. 18(13): p. 1621-3.
    87. Jin, S., et al., Lipid raft redox signaling: molecular mechanisms in health and disease. Antioxid Redox Signal, 2011. 15(4): p. 1043-83.
    88. Das, M. and D.K. Das, Lipid raft in cardiac health and disease. Curr Cardiol Rev, 2009. 5(2): p. 105-11.
    89. Kurzchalia, T.V. and R.G. Parton, Membrane microdomains and caveolae. Curr Opin Cell Biol, 1999. 11(4): p. 424-31.
    90. Williams, T.M. and M.P. Lisanti, The Caveolin genes: from cell biology to medicine. Ann Med, 2004. 36(8): p. 584-95.
    91. Kukkonen, J.P., A menage a trois made in heaven: G-protein-coupled receptors, lipids and TRP channels. Cell Calcium, 2011. 50(1): p. 9-26.
    92. Head, B.P., et al., Microtubules and actin microfilaments regulate lipid raft/caveolae localization of adenylyl cyclase signaling components. J Biol Chem, 2006. 281(36): p. 26391-9.
    93. Everson, W.V. and E.J. Smart, Influence of caveolin, cholesterol, and lipoproteins on nitric oxide synthase: implications for vascular disease. Trends Cardiovasc Med, 2001. 11(6): p. 246-50.
    94. Hagiwara, Y., et al., Immunolocalization of caveolin-1 and caveolin-3 in monkey skeletal, cardiac and uterine smooth muscles. Cell Struct Funct, 2002. 27(5): p. 375-82.
    95. Patel, H.H., et al., Mechanisms of cardiac protection from ischemia/reperfusion injury: a role for caveolae and caveolin-1. FASEB J, 2007. 21(7): p. 1565-74.
    96. Horikawa, Y.T., et al., Caveolin-3 expression and caveolae are required for isoflurane-induced cardiac protection from hypoxia and ischemia/reperfusion injury. J Mol Cell Cardiol, 2008. 44(1): p. 123-30.
    97. Vigneron, F., et al., GSK-3beta at the crossroads in the signalling of heart preconditioning: implication of mTOR and Wnt pathways. Cardiovasc Res, 2011. 90(1): p. 49-56.
    98. Omar, M.A., L. Wang, and A.S. Clanachan, Cardioprotection by GSK-3 inhibition: role of enhanced glycogen synthesis and attenuation of calcium overload. Cardiovasc Res, 2010. 86(3): p. 478-86.
    99. Juhaszova, M., et al., Role of glycogen synthase kinase-3beta in cardioprotection. Circ Res, 2009. 104(11): p. 1240-52.
    100. Takahashi-Yanaga, F. and T. Sasaguri, GSK-3beta regulates cyclin D1 expression: a new target for chemotherapy. Cell Signal, 2008. 20(4): p. 581-9.
    101. Tachibana, H., et al., A receptor for green tea polyphenol EGCG. Nat Struct Mol Biol, 2004. 11(4): p. 380-1.
    102. Chichili, G.R. and W. Rodgers, Cytoskeleton-membrane interactions in membrane raft structure. Cell Mol Life Sci, 2009. 66(14): p. 2319-28.
    103. Allen, J.A., R.A. Halverson-Tamboli, and M.M. Rasenick, Lipid raft microdomains and neurotransmitter signalling. Nat Rev Neurosci, 2007. 8(2): p. 128-40.
    104. Sussman, M.A., et al., Myocardial AKT: the omnipresent nexus. Physiol Rev, 2011. 91(3): p. 1023-70.
    105. Baines, C.P., The cardiac mitochondrion: nexus of stress. Annu Rev Physiol, 2010. 72: p. 61-80.
    106. Whelan, R.S., V. Kaplinskiy, and R.N. Kitsis, Cell death in the pathogenesis of heart disease: mechanisms and significance. Annu Rev Physiol, 2010. 72: p. 19-44.
    107. Chou, H.C., et al., Proteomics study of oxidative stress and Src kinase inhibition in H9C2 cardiomyocytes: a cell model of heart ischemia-reperfusion injury and treatment. Free Radic Biol Med, 2010. 49(1): p. 96-108.
    108. Sheng, R., et al., Epigallocatechin gallate protects H9c2 cardiomyoblasts against hydrogen dioxides- induced apoptosis and telomere attrition. Eur J Pharmacol, 2010. 641(2-3): p. 199-206.
    109. Daugherty, R.L. and C.J. Gottardi, Phospho-regulation of Beta-catenin adhesion and signaling functions. Physiology (Bethesda), 2007. 22: p. 303-9.
    110. Dashwood, W.M., et al., Lysosomal trafficking of beta-catenin induced by the tea polyphenol epigallocatechin-3-gallate. Mutat Res, 2005. 591(1-2): p. 161-72.
    111. Li, P.L., Y. Zhang, and F. Yi, Lipid raft redox signaling platforms in endothelial dysfunction. Antioxid Redox Signal, 2007. 9(9): p. 1457-70.
    112. Zhang, A.Y., et al., Lipid raft clustering and redox signaling platform formation in coronary arterial endothelial cells. Hypertension, 2006. 47(1): p. 74-80.
    113. Kikuchi, T., et al., Behavior of caveolae and caveolin-3 during the development of myocyte hypertrophy. J Cardiovasc Pharmacol, 2005. 45(3): p. 204-10.
    114. Uray, I.P., et al., Mechanical unloading increases caveolin expression in the failing human heart. Cardiovasc Res, 2003. 59(1): p. 57-66.
    115. Jasmin, J.F., et al., Lung remodeling and pulmonary hypertension after myocardial infarction: pathogenic role of reduced caveolin expression. Cardiovasc Res, 2004. 63(4): p. 747-55.
    116. Piech, A., et al., Decreased expression of myocardial eNOS and caveolin in dogs with hypertrophic cardiomyopathy. Am J Physiol Heart Circ Physiol, 2002. 282(1): p. H219-31.
    117. Hare, J.M., et al., Contribution of caveolin protein abundance to augmented nitric oxide signaling in conscious dogs with pacing-induced heart failure. Circ Res, 2000. 86(10): p. 1085-92.
    118. Shi, Y., et al., Chronic myocardial hypoxia increases nitric oxide synthase and decreases caveolin-3. Free Radic Biol Med, 2000. 29(8): p. 695-703.
    119. Zager, R.A., et al., Altered cholesterol localization and caveolin expression during the evolution of acute renal failure. Kidney Int, 2002. 61(5): p. 1674-83.
    120. Santos, C.X., et al., Redox signaling in cardiac myocytes. Free Radic Biol Med, 2011. 50(7): p. 777-93.
    121. Wall, S.B., et al., Oxidative modification of proteins: an emerging mechanism of cell signaling. Front Physiol, 2012. 3: p. 369.
    122. Verdouw, P.D., et al., Animal models in the study of myocardial ischaemia and ischaemic syndromes. Cardiovasc Res, 1998. 39(1): p. 121-35.
    123. Burgoyne, J.R., et al., Redox signaling in cardiac physiology and pathology. Circ Res, 2012. 111(8): p. 1091-106.
    124. Ferdinandy, P., R. Schulz, and G.F. Baxter, Interaction of cardiovascular risk factors with myocardial ischemia/reperfusion injury, preconditioning, and postconditioning. Pharmacol Rev, 2007. 59(4): p. 418-58.
    125. Anversa, P. and J. Kajstura, Myocyte cell death in the diseased heart. Circ Res, 1998. 82(11): p. 1231-3.
    126. Law, C.H., et al., Hyaluronic acid-dependent protection in H9C2 cardiomyocytes: a cell model of heart ischemia-reperfusion injury and treatment. Toxicology, 2013. 303: p. 54-71.
    127. Chen, Y.W., et al., Cardioprotective Effects of Quercetin in Cardiomyocyte under Ischemia/Reperfusion Injury. Evid Based Complement Alternat Med, 2013. 2013: p. 364519.
    128. Chou, H.C. and H.L. Chan, 5-Methoxytryptophan-dependent protection of cardiomyocytes from heart ischemia reperfusion injury. Arch Biochem Biophys, 2014. 543: p. 15-22.
    129. Hsieh, S.R., et al., Epigallocatechin-3-gallate-mediated cardioprotection by Akt/GSK-3beta/caveolin signalling in H9c2 rat cardiomyoblasts. J Biomed Sci, 2013. 20: p. 86.
    130. Nakagawa, T. and T. Yokozawa, Direct scavenging of nitric oxide and superoxide by green tea. Food Chem Toxicol, 2002. 40(12): p. 1745-50.
    131. L'Allemain, G., [Multiple actions of EGCG, the main component of green tea]. Bull Cancer, 1999. 86(9): p. 721-4.
    132. Agoulnik, I.U., et al., INPP4B: the new kid on the PI3K block. Oncotarget, 2011. 2(4): p. 321-8.
    133. Bozulic, L. and B.A. Hemmings, PIKKing on PKB: regulation of PKB activity by phosphorylation. Curr Opin Cell Biol, 2009. 21(2): p. 256-61.
    134. Bozulic, L., et al., PKBalpha/Akt1 acts downstream of DNA-PK in the DNA double-strand break response and promotes survival. Mol Cell, 2008. 30(2): p. 203-13.
    135. Ma, K., et al., PI(3,4,5)P3 and PI(3,4)P2 levels correlate with PKB/akt phosphorylation at Thr308 and Ser473, respectively; PI(3,4)P2 levels determine PKB activity. Cell Signal, 2008. 20(4): p. 684-94.
    136. Bomsztyk, K., O. Denisenko, and J. Ostrowski, hnRNP K: one protein multiple processes. Bioessays, 2004. 26(6): p. 629-38.
    137. White, M.C., et al., Inactivation of hnRNP K by expanded intronic AUUCU repeat induces apoptosis via translocation of PKCdelta to mitochondria in spinocerebellar ataxia 10. PLoS Genet, 2010. 6(6): p. e1000984.
    138. Zheng, H., et al., Calcium-sensing receptor activating phosphorylation of PKCdelta translocation on mitochondria to induce cardiomyocyte apoptosis during ischemia/reperfusion. Mol Cell Biochem, 2011. 358(1-2): p. 335-43.
    139. Thomas, M.G., et al., Staufen recruitment into stress granules does not affect early mRNA transport in oligodendrocytes. Mol Biol Cell, 2005. 16(1): p. 405-20.
    140. Liou, Y.M., S.C. Kuo, and S.R. Hsieh, Differential effects of a green tea-derived polyphenol (-)-epigallocatechin-3-gallate on the acidosis-induced decrease in the Ca(2+) sensitivity of cardiac and skeletal muscle. Pflugers Arch, 2008. 456(5): p. 787-800.
    141. Murphy, E. and C. Steenbergen, Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev, 2008. 88(2): p. 581-609.
    142. Peng, T.I. and M.J. Jou, Oxidative stress caused by mitochondrial calcium overload. Ann N Y Acad Sci, 2010. 1201: p. 183-8.
    143. Judge, S. and C. Leeuwenburgh, Cardiac mitochondrial bioenergetics, oxidative stress, and aging. Am J Physiol Cell Physiol, 2007. 292(6): p. C1983-92.
    144. Wang, J., et al., Inhibition of aldehyde dehydrogenase 2 by oxidative stress is associated with cardiac dysfunction in diabetic rats. Mol Med, 2011. 17(3-4): p. 172-9.
    145. Bordoni, A., et al., Hypoxia/reoxygenation alters essential fatty acids metabolism in cultured rat cardiomyocytes: protection by antioxidants. Nutr Metab Cardiovasc Dis, 2005. 15(3): p. 166-73.
    146. Zhu, Y., et al., Salidroside protects against hydrogen peroxide-induced injury in cardiac H9c2 cells via PI3K-Akt dependent pathway. DNA Cell Biol, 2011. 30(10): p. 809-19.
    147. Angeloni, C., et al., Role of quercetin and its in vivo metabolites in protecting H9c2 cells against oxidative stress. Biochimie, 2007. 89(1): p. 73-82.
    148. Scheid, M.P., P.A. Marignani, and J.R. Woodgett, Multiple phosphoinositide 3-kinase-dependent steps in activation of protein kinase B. Mol Cell Biol, 2002. 22(17): p. 6247-60.
    149. Lahair, M.M., et al., Molecular pathways leading to oxidative stress-induced phosphorylation of Akt. Antioxid Redox Signal, 2006. 8(9-10): p. 1749-56.
    150. Lindvall, J. and T.C. Islam, Interaction of Btk and Akt in B cell signaling. Biochem Biophys Res Commun, 2002. 293(5): p. 1319-26.
    151. Cheung, S.M., et al., Regulation of phosphoinositide 3-kinase signaling by oxidants: hydrogen peroxide selectively enhances immunoreceptor-induced recruitment of phosphatidylinositol (3,4) bisphosphate-binding PH domain proteins. Cell Signal, 2007. 19(5): p. 902-12.
    152. Jochmann, N., G. Baumann, and V. Stangl, Green tea and cardiovascular disease: from molecular targets towards human health. Curr Opin Clin Nutr Metab Care, 2008. 11(6): p. 758-65.
    153. Wolfram, S., Effects of green tea and EGCG on cardiovascular and metabolic health. J Am Coll Nutr, 2007. 26(4): p. 373S-388S.
    154. Sumpio, B.E., et al., Green tea, the "Asian paradox," and cardiovascular disease. J Am Coll Surg, 2006. 202(5): p. 813-25.
    155. Stangl, V., M. Lorenz, and K. Stangl, The role of tea and tea flavonoids in cardiovascular health. Mol Nutr Food Res, 2006. 50(2): p. 218-28.
    156. Kuriyama, S., The relation between green tea consumption and cardiovascular disease as evidenced by epidemiological studies. J Nutr, 2008. 138(8): p. 1548S-1553S.
    157. Kuriyama, S., et al., Green tea consumption and mortality due to cardiovascular disease, cancer, and all causes in Japan: the Ohsaki study. JAMA, 2006. 296(10): p. 1255-65.
    158. Hirano, R., et al., Comparison of green tea intake in Japanese patients with and without angiographic coronary artery disease. Am J Cardiol, 2002. 90(10): p. 1150-3.
    159. Peters, U., C. Poole, and L. Arab, Does tea affect cardiovascular disease? A meta-analysis. Am J Epidemiol, 2001. 154(6): p. 495-503.
    160. Yang, C.S., et al., Blood and urine levels of tea catechins after ingestion of different amounts of green tea by human volunteers. Cancer Epidemiol Biomarkers Prev, 1998. 7(4): p. 351-4.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE