簡易檢索 / 詳目顯示

研究生: 李竑諺
論文名稱: 製備含有二氧化矽殼層結構之核殼型釔鋁石榴石螢光材料並探討銀奈米粒子對其螢光強度的影響
指導教授: 韓建中
口試委員: 李明昌
白孟宜
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 120
中文關鍵詞: 殼層結構銀奈米粒子螢光
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本實驗室傅睿涵學長之論文中,我們成功的利用銀奈米粒子的表面電漿共振 (Surface Plasmon resonance,SPR),將市售的具有微米尺寸之釔鋁石榴石 (Y3Al5O12,YAG) 的螢光強度增強為1.25 – 1.5倍。然而表面電漿共振所引發之金屬增強螢光 (Metal-Enhanced Fluorescence, MEF) 現象需要金屬奈米粒子與螢光物質靠近至10 nm左右,又由於在文獻上已提出金屬奈米粒子與螢光發光物質足夠靠近後,不單單具有金屬增強螢光的性質,也存在著對於距離更敏感(小於5 nm時發生),且易造成螢光焠熄現象的螢光共振能量轉移 (Fluorescence Resonance Energy Transfer, FRET) 情形發生,因此本論文進一步針對奈米尺寸之YAG粒子以四乙氧基矽烷 (Tetraethoxysilane, TEOS) 搭配氨水進行鹼性催化水解,使TEOS分子間形成Si – O – Si鍵之網狀結構,便可於YAG顆粒上形成一可控制厚度之二氧化矽包覆膜,用來做為銀奈米粒子與YAG顆粒之間的隔離膜。並以穿透式電子顯微鏡影像以及奈米級歐傑電子能譜儀做縱深分析以確認包覆於YAG表面的二氧化矽層厚度,再以EDX做非破壞性的元素分析,比較包覆前後之YAG顆粒成分比例,最後搭配螢光放光光譜儀的量測結果,來選擇銀奈米粒子沉積的條件。
    為了能夠於較惰性的二氧化矽表面有效沉積銀奈米粒子,特別利用無電極電鍍方法於二氧化矽表面形成Sn(II) 的還原點,再與氨銀錯合物反應,還原出銀奈米粒子,接著以穿透式電子顯微鏡觀測分布情形,以及奈米級歐傑電子能譜儀與EDX做表面成分分析,證明確實有銀的顆粒存在,再以螢光放光光譜的量測結果,推論出不單單只是將銀奈米粒子放置在與螢光放光物質具有一適當距離的位置即可有螢光增強的現象,還必須考慮到銀奈米粒子的尺寸所造成的電場增強之距離範圍,否則仍將會造成螢光的焠熄。因此將沉積於二氧化矽表面的銀奈米粒子進行再成長,然而以化學方式所能再成長的尺寸有限,因此銀奈米粒子的淨貢獻仍是造成焠熄情形,最後改用大尺寸市售銀奈米顆粒與包覆上二氧化矽層的YAG顆粒混合於PDMS薄膜中,成功於包覆厚度約12 nm時且添加銀奈米粒子的量為0.2 mg情況下達到1.06倍(相對於原始未包覆SiO2的YAG)及1.8倍(相對於包覆上SiO2之YAG粒子)的增強放光效果,此結果顯示銀奈米顆粒的表面電漿共振效應,確實可以造成YAG的螢光放光強度增強的效果。


    本文目錄 第一章 緒論與文獻回顧 10 1-1 緒論 11 1-2 表面電漿共振 13 1-2-1 金屬奈米粒子的光學性質 13 1-2-2 表面電漿子 15 1-2-3 金屬奈米粒子在光學元件上的應用價值 17 1-3 利用金屬奈米粒子其表面電漿共振增強螢光放光 22 1-3-1 螢光增強理論 22 1-3-2 影響螢光增強效應的因素 25 1-4 YAG螢光粉簡介 30 1-5 無電極電鍍 31 1-6 金屬增強螢光效應的實例 33 1-7 研究動機 38 1-8 參考文獻 39 第二章 實驗內容 43 2-1 藥品 44 2-2 TEOS脫水包覆於YAG表面 45 2-3 YAG / SiO2之表面敏化 (Surface sensitizaion)及活化 (activation) 47 2-3-1 藥品準備 47 2-3-2 於 YAG / SiO2 顆粒表面進行Surface sensitizaion 47 2-3-3 於YAG/SiO2/Sn2+ 顆粒表面進行Surface activation 48 2-4 表面銀奈米種子再成長 49 2-4-1  Formaldehyde 方法: 49 2-4-2  L-(+)-Ascorbic Acid 方法: 49 2-4-3  Trisodium citrate 方法: 50 2-4-4  Polyvinylpyrrolidone, PVP 方法: 50 2-5 製做聚二甲基矽氧烷(Polydimethylsiloxane, PDMS)薄膜 52 2-6 儀器部份 53 第三章 探討 TEOS 包覆於 YAG 表面的厚度行為及螢光強度的影響 56 3-1 利用 TEOS 做為間隔膜包覆於 YAG 螢光粉顆粒表面 57 3-1-1  實驗方法的建立 58 3-1-2  包覆厚度之探討 58 3-2 EDX 與 nano-Auger 的鑑定結果分析 77 3-2-1  EDX 部分 77 3-2-2  nano-Auger 部分 79 3-3 不同厚度核殼結構之螢光影響 85 3-4 結論 89 3-5 參考文獻 90 第四章 以無電極電鍍方法將銀奈米粒子沉積於 YAG/SiO2 表面與銀奈米粒子尺寸對螢光強度的影響 91 4-1 前言 92 4-2 利用無電極電鍍沉積銀奈米顆粒 93 4-2-1  實驗方法的建立 93 4-2-2 表面敏化 (Surface sensitization) 94 4-2-3 表面活化 (Surface activation) 95 4-2-4 螢光強度探討 100 4-3 表面銀奈米粒子再成長 103 4-3-1 成長方式 103 4-3-2 成長比較 104 4-3-3 表面銀奈米粒子之 EDX 與 nano Auger 分析及 TEM 之高倍率影像 106 4-3-4 螢光強度探討 110 4-3-5 利用市售銀奈米粒子來探討對螢光強度影響 114 4-4 結論 118 4-5 參考文獻 120

    1. Mie, G., “Contributions to the optics of turbid media, particularly of colloidal metal solutions”. Ann. Phys. 1908, 25, 377-445.
    2. Sun,Y.; “Shape-Controlled Synthesis of Gold and Silver Nanoparticles” Science 2002, 298, 2176-2179.
    3. Craighead, H. G.; Niklasson, G. A., “Characterization and optical properties of arrays of small gold particles” Appl. Phys. Lett. 1984, 44, 1134-1136.
    4. Kreibig, U.; Vollmer, M., “Optical Properties of Metal Clusters”. Springer, Berlin 1995.
    5. Bohren, C. F.; Huffman, D. R., “Absorption and Scattering of Light by Small Particles”. Wiley, New York 1983.
    6. Zhu, J.; Huang, L.; Zhao, J.; Wang, Y.; Zhao, Y.; Hao, L.; Lu, Y., “Shape dependent resonance light scattering properties of gold nanorods”. Mate. Sci. Eng. B 2005, 121, 199-203.
    7. Yu, Y. Y.; Chang, S. S.; Lee, C. L.; Wang, C. R. C., “Gold Nanorods: Electrochemical Synthesis and Optical Properties”. J. Phys. Chem. B 1997, 101, 6661-6664.
    8. (a) S. Link, M. B. Mohamed, M. A. El-Sayed “Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of Their Aspect Ratio and the Effect of the Medium Dielectric Constant”J. Phys. Chem. B 1999, 103, 3073; (b) S. S. Chang, C. W. Shih, C. D. Chen, W. C. Lai, C. R. C. Wang “The Shape Transition of Gold Nanorods” Langmuir 1999, 15, 701.
    9. Link, S.; El-Sayed, M. A., “Shape and size dependence of radiative, non- radiative and photothermal properties of gold nanocrystals”. Int. Rev. Phys. Chem. 2000, 19 , 409-453.
    10. Lakowicz, J. R., “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission”. Anal. Biochem. 2005, 337, 171-194.
    11. Lakowicz, J. R., “Plasmonics in Biology and Plasmon-Controlled Fluorescence”. Plasmonic 2006, 1, 5-33.
    12. Hwang, E.; Smolyaninov, I. I.; Davis, C. C., “Surface Plasmon Polariton Enhanced Fluorescence from Quantum Dots on Nanostructured Metal Surfaces”. Nano Lett. 2010, 10, 813-820.
    13. Lal, S.; Grady, N. K.; Kundu, J.; Levin, C. S.; Halas, J. B. L. a. N. J., “Tailoring plasmonic substrates for surface enhanced spectroscopies”. Chem. Soc. Rev 2008, 37, 898-911.
    14. Wang, H.; Brandl, D. W.; Nordlander, P.; HALAS, N. J., “Plasmonic Nanostructures: Artificial Molecules”. Acc. Chem. Res. 2007, 40, 53-62.
    15. Schwartzberg, A. M.; Zhang, J. Z., “Novel Optical Properties and Emerging Applications of Metal Nanostructures”. J. Phys. Chem. C 2008, 112 , 10323-10337.
    16. Maier, S. A.; Brongersma, M. L.; Kik, P. G.; Meltzer, S.; Requicha, A. A. G.; Atwater, H. A., “Plasmonics-A Route to Nanoscale Optical Devices”. Adv. Mater. 2001, 13 , 1501-1505.
    17. Quinten, M.; Leitner, A.; Krenn, J. R.; Aussenegg, F. R., “Electromagnetic energy transport via linear chains of silver nanoparticles”. Opt. Lett. 1998, 23 , 1331-1333.
    18. Maier, S. A.; Kik, P. G.; Atwater, H. A., “Optical pulse propagation in metal nanoparticle chain waveguides”. Phys. Rev. B 2003, 67, 205402.
    19. Maier, S. A.; Kik, P. G.; Atwater, H. A.; Meltzer, S.; Harel, E.; Koel, B. E.; Requicha, A. A. G., “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides”. Nat. Mater. 2003, 2, 229-232.
    20. Lamprecht, B.; Schider, G.; Lechner, R. T.; Ditlbacher, H.; Krenn, J. R.; Leitner, A.; Aussenegg, F. R., “Metal Nanoparticle Gratings: Influence of Dipolar Particle Interaction on the Plasmon Resonance”. Phys. Rev. Lett. 2000, 84, 4721-4724.
    21. Quinten, M.; Leitner, A.; Krenn, J. R.; Aussenegg, F. R., “Electromagnetic energy transport via linear chains of silver nanoparticles”. Opt.Lett. 1998, 23 , 1331-1333.
    22. Lamprecht, B.; Schider, G.; Lechner, R. T.; Ditlbacher, H.; Krenn, J. R.; Leitner, A.; Aussenegg, F. R., “Metal Nanoparticle Gratings: Influence of Dipolar Particle Interaction on the Plasmon Resonance”. Phys. Rev. Lett. 2000, 84, 4721-4724.
    23. Félidj, N.; Aubard, J.; Lévi, G.; Krenn, J. R.; Hohenau, A.; Schider, G.; Leitner, A.; Aussenegg, F. R., “Optimized surface-enhanced Raman scattering on gold nanoparticle arrays”. Appl. Phys. Lett. 2003, 82, 3095-3097.
    24. Chen, M. W.; Chau, Y.-F.; Tsai, D. P., “Three-Dimensional Analysis of Scattering Field Interactions and Surface Plasmon Resonance in Coupled Silver Nanospheres”. Plasmonic 2008, 3, 157-164.
    25. Murray, W. A.; Barnes, W. L., “Plasmonic Materials”. Adv. Mater. 2007, 19, 3771-3782.
    26. Lakowicz, J. R., “Radiative Decay Engineering: Biophysical and Biomedical Applications”. Anal. Biochem. 2001, 298 (1), 1-24.
    27. Geddes, C. D.; Lakowicz, J. R., “Metal-Enhanced Fluorescence”. J. Fluoresc. 2002, 12 , 121-129.
    28. Lakowicz, J. R.; Ray, K.; Chowdhury, M.; Szmacinski, H.; Fu, Y.; Zhang, J.; Nowaczyk, K., “Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy”. Analyst 2008, 133, 1308-1346.
    29. Kneipp, K.; Kneipp, H.; Itzkan, I.; Dasari, R. R.; Feld, M. S., “Surface-enhanced Raman scattering and biophysics”. J. Phys.: Condens. Matter 2002, 14, R597-R624.
    30. Steinberg, I. Z., “Long-Range Nonradiative Transfer of Electronic Excitation Energy in Proteins and Polypeptides”. Annu. Rev. Biochem. 1971, 40, 83-114.
    31. Zhang, J.; Fu, Y.; Lakowicz, J. R., “Enhanced Forster Resonance Energy Transfer (FRET) on a Single Metal Particle”. J. Phys. Chem. C 2007, 111, 50-56.
    32. Ruppin, R., “Decay of an excited molecule near a small metal sphere”. J. Chem. Phys. 1982, 76, 1681-1684.
    33. Chew, H., “Transition rates of atoms near spherical surfaces”. J. Chern. Phys. 1987, 87 , 1355-1360.
    34. Zhang, Y.; Zhang, R.; Wang, Q.; Zhang, Z.; Zhu, H.; Liu, J.; Song, F.; Lin, S.; Pun, E. Y. B., “Fluorescence enhancement of quantum emitters with different energy systems near a single spherical metal nanoparticle”. Opt. Exp. 2010, 18 , 4316-4328.

    35. Ray, K.; Badugu, R.; Lakowicz, J. R., “Distance-Dependent Metal-Enhanced Fluorescence from Langmuir-Blodgett Monolayers of Alkyl-NBD Derivatives on Silver Island Films”. Langmuir 2006, 22, 8374-8378.
    36. Zhang, J.; Matveeva, E.; Gryczynski, I.; Leonenko, Z.; Lakowicz, J. R., “Metal-Enhanced Fluoroimmunoassay on a Silver Film by Vapor Deposition”. J. Phys. Chem. B 2005, 109 , 7969-7975.
    37. Kobayashi, Y. ; Liz-Matzan, L.M., “Deposition of Silver Nanoparticles on Silica Spheres by Pretreatment Steps in Electroless Plating”. Chem. Mater. 2001,13,1630-1633

    38. Lim, Y.T. ; Park, O. O., “Gold nanolayer-encapsulated silica particles synthesized by surface seeding and shell growing method: near infrared responsive materials” . J.Colloid Interface Sci 2003, 263, 449-453.
    39. Jin, Y.; Gao, X., “Plasmonic fluorescent quantum dots”. Nat. Nanotechnol. 2009, 4, 571-576.
    40. Zhang, J.; Fu, Y.; Lakowicz, J. R., “Luminescent Silica Core/Silver Shell Encapsulated with Eu(III) Complex”. J. Phys. Chem. C 2009, 113, 19404-19410.
    41. Zhang, J.; Fu, Y.; Chowdhury, M. H.; Lakowicz, J. R., “Single-Molecule Studies on Fluorescently Labeled Silver Particles: Effects of Particle Size”. J. Phys. Chem. C 2008, 112, 18-26.
    1. Hu, Y.; Zhang, Q.; Goebl, J.; Zhang, T.; Yin, Y., “Control over the permeation of silica nanoshells by surface-protected etching with water”. Phys. Chem. Chem. Phys. 2010, 12, 11836-11842.

    2. Cong, L.; Takeda, M.; Hamanaka, Y.; Gonda, K.;Watanabe, M.; Kumasaka,M.; Kobayashi5, Y.; Kobayashi, M.; Ohuchi, N., “Uniform Silica Coated Fluorescent Nanoparticles: Synthetic Method, Improved Light Stability and Application to Visualize Lymph Network Tracer” Science 2010, 5, 1-6.

    3. Liz-Marza, L. M.; Giersig, M.; Mulvaney, P., “Synthesis of Nanosized Gold-Silica Core-Shell Particles” Langmuir 1996, 12, 4329-4335
    1. Kobayashi, Y. ; Liz-Matzan, L.M., “Deposition of Silver Nanoparticles on Silica Spheres by Pretreatment Steps in Electroless Plating”. Chem. Mater. 2001,13,1630-1633

    2. Ye, X. ; Zhou, Y. ; Chen, J. ; Sun, Y., “Deposition of Silver Nanoparticles on Silica Spheres via ultrasound irradiation” . Appl. Surf. Sci .2007,253,6264-6267

    3. Lim, Y.T. ; Park, O. O. ; Jung H.Y., “Gold nanolayer-encapsulated silica particles synthesized by surface seeding and shell growing method: near infrared responsive materials” . J.Colloid Interface Sci 2003, 263, 449-453.

    4. Pyne S.; Sarkar P.; Basu S.; Sahoo G.P.; Bhui D.K.; Bar H.; Misra A. , “Synthesis and photo physical properties of Au @ Ag (core @ shell) nanoparticles disperse in poly vinyl alcohol matrix” . J. Nanopart Res 2011, 13, 1759-1767.

    5. Matthias M. ; Koebel•Louis C. ; Jones•Gabor A., “Preparation of size-tunable, highly monodisperse PVP-protected Pt-nanoparticles by seed-mediated growth” . J. Nanopart Res. 2008,10,1063-1069

    6. Zhang J. ; Fu Y. ; Chowdhury M.H. ; Lakowicz J.R., “Single-Molecule Studies on Fluorescently Labeled Silver Particles: Effects of Particle Size” . J. Phys. Chem. C. 2008, 112, 18-26

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE