簡易檢索 / 詳目顯示

研究生: 陳奕瑄
Chen, Yi-Hsuan
論文名稱: 非均等錯誤保護類循環低密度偶校碼之密度演化分析
Analysis of UEP QC-LDPC Codes Using Density Evolution
指導教授: 趙啟超
Chao, Chi-Chao
口試委員: 林茂昭
楊谷章
蘇育德
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 72
中文關鍵詞: 非均等錯誤保護低密度偶校碼密度演化高斯近似
外文關鍵詞: LDPC, Unequal error protection (UEP), Density Evolution, Gaussian Approximation
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 低密度偶校碼(Low-Density Parity-Check Codes)是一種錯誤更正碼,其被證實在足夠碼長並使用疊代信息傳遞解碼時,會有接近薛農極限(Shannon limit)的性能。由於類循環低密度偶校碼(Quasi-Cyclic Low-Density Parity-Check Codes)的偶校矩陣擁有良好的代數結構,使得硬體實現及分析上的複雜度皆能大幅降低,在行動通訊領域上因而備受關注。
    對於由屏蔽(masking)方法所建構的非均等錯誤保護(Unequal Error Protection)類循環低密度偶校碼,其碼字元(codeword bit)依據偶校矩陣分成多個部分,各自有著不同的糾錯能力,藉此加強保護較重要的信息。傳統上,低密度偶校碼在置信傳播(Belief Propagation)解碼下的漸近性能常利用密度演化(Density Evolution)分析,藉由使用信息密度的高斯近似(Gaussian Approximation),其運算複雜度可大幅降低。然而,過往的分析方式並沒有針對非均等錯誤保護能力的特性做調整。
    基於偶校矩陣之結構,本論文提出適用於分析非均等錯誤保護類循環低密度偶校碼之性能的方法。我們利用高斯近似推導出信息傳遞公式,計算各個保護層級的解碼閾值(threshold),並分析解碼收斂行為。模擬結果驗證了所提方法能夠良好地預測各區段的錯誤保護能力,免除實作上的高複雜度。


    Low-density parity-check (LDPC) codes have been demonstrated to approach the Shannon-limit with iterative message-passing decoding and long code lengths. Quasi-cyclic LDPC (QC-LDPC) codes with algebraic structures have attracted great interest because they can be encoded, decoded, and analyzed efficiently. For QC-LDPC codes with unequal error protection (UEP) properties, the codeword bits are divided into several parts, and each part possesses a different error-correcting capability. The asymptotic performance of LDPC codes under belief propagation decoding is usually analyzed by using density evolution, and Gaussian approximation for message densities under density evolution can be used to simplify the analysis. However, conventional analysis methods cannot be directly applied to LDPC codes with UEP properties.
    In this thesis, we propose methods to analyze the behavior of UEP QC-LDPC codes by specifying the structures of parity-check matrices. Formulas for detailed representations are derived using density evolution with Gaussian approximation. Furthermore, we calculate the decoding thresholds for different protection levels and analyze the decoding convergence behavior by using the proposed analysis tool.
    Simulation results verify that the proposed methods can well predict the UEP capability for various codes.

    Abstract i Contents ii 1 Introduction 2 2 Low-Density Parity-Check Codes and Decoding 5 2.1 Definition to LDPC Codes 5 2.2 Sum-Product Algorithm 7 2.3 Shuffled Decoding Algorithm 11 2.4 Density Evolution with Gaussian Approximation 12 2.4.1 Gaussian Approximation for Regular LDPC Codes 15 2.4.2 Gaussian Approximation for Irregular LDPC Codes 16 3 Preliminaries for UEP QC-LDPC Codes 19 3.1 Quasi-Cyclic Low-Density Parity-Check Codes 19 3.2 UEP QC-LDPC Codes via Masking 20 3.3 Adaptive Decoding Scheme for UEP QC-LDPC Codes 26 4 Proposed Analysis for UEP QC-LDPC Codes 29 4.1 Density Evolution for UEP QC-LDPC Codes 30 4.2 Gaussian Approximation for UEP QC-LDPC Codes 33 4.3 Threshold Prediction 36 4.4 Decoding Convergence Analysis 60 5 Conclusion 69

    [1] R. G. Gallager, “Low-density parity-check codes,” IEEE Trans. Inf. Theory, vol. 8, pp.21–28, Jan. 1962.

    [2] D. J. C. MacKay, “Good error-correcting codes based on very sparse matrices,” IEEE Trans. Inf. Theory, vol. 45, pp. 399–431, Mar. 1999.

    [3] R. M. Tanner, “A recursive approach to low complexity codes,” IEEE Trans. Inf. Theory, vol. 27, pp. 533–547, Sep. 1981.

    [4] F. R. Kschischang, B. J. Frey, and H. A. Loeliger, “Factor graphs and the sum-product algorithm,” IEEE Trans. Inf. Theory, vol. 47, pp. 498–519, Feb. 2001.

    [5] T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke, “Design of capacity- approaching irregular low-density parity-check codes,” IEEE Trans. Inf. Theory, vol. 47, pp. 619–637, Feb. 2001.

    [6] M. P. C. Fossorier, “Quasicyclic low-density parity-check codes from circulant permutation matrices,” IEEE Trans. Inf. Theory, vol. 50, pp. 1788–1793, Aug. 2004.

    [7] C.-J. Wu, “New constructions of equal error protection and unequal error protection QC-LDPC codes,” Ph.D. dissertation, Inst. Commun. Eng., Nat. Tsing Hua Univ., Hsinchu, Taiwan, R.O.C., 2016.

    [8] C.-J. Wu, C.-H. Wang, and C.-C. Chao, “UEP constructions of quasi-cyclic low-density parity-check codes via masking,” IEEE Trans. Inf. Theory, vol. 63, pp. 6271–6294, Oct. 2017.

    [9] J. Zhang and M. Fossorier, “Shuffled iterative decoding,” IEEE Trans. Commun., vol. 53, pp. 209–213, Feb. 2005.

    [10]——, “Shuffled belief propagation decoding,” in Proc. IEEE Asilomar Conf. Signals Syst. Comput, Pacific Grove, CA, Nov. 2002, pp. 8–15.

    [11] J.-J. Wu, “Decoding scheduling schemes for UEP QC-LDPC codes,” M.S. thesis, Inst. Commun. Eng., Nat. Tsing Hua Univ., Hsinchu, Taiwan, R.O.C., 2017.

    [12] S.-Y. Chung, T. J. Richardson, and R. L. Urbanke, “Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation,” IEEE Trans. Inf. Theory, vol. 47, pp. 657–670, Feb. 2001.

    [13] S. ten Brink, “Convergence behavior of iteratively decoded parallel concatenated codes,”
    IEEE Trans. Commun., vol. 49, no. 10, pp. 1727–1737, Oct. 2001.

    [14] S. ten Brink, G. Kramer, and A. Ashikhmin, “Design of low-density parity-check codes for modulation and detection,” IEEE Trans. Commun., vol. 52, no. 4, pp. 670–678, Apr. 2004.

    [15]W. E. Ryan and S. Lin, Channel Codes: Classical and Modern. Cambridge, UK: Cambridge University Press, 2009.

    [16] J. Dai, K. Niu, Z. Si, C. Dong, and J. Lin, “Does Gaussian approximation work well for the long-length polar code construction?” IEEE Access, vol. 5, pp. 7950–7963, 2017.

    [17] R. M. Tanner, D. Sridhara, A. Sridharan, T. E. Fuja, and D. J. Costello, “LDPC block and convolutional codes based on circulant matrices,” IEEE Trans. Inf. Theory, vol. 50, pp. 2966–2984, Dec. 2004.

    [18] J. Xu, L. Chen, I. Djurdjevic, S. Lin, and K. Abdel-Ghaffar, “Construction of regular and irregular LDPC codes: Geometry decomposition and masking,” IEEE Trans. Inf. Theory, vol. 53, pp. 121–134, Jan. 2007.

    QR CODE