簡易檢索 / 詳目顯示

研究生: 露 欣
Yadav, Ruchi Ashok Kumar
論文名稱: 微流控系统中液滴生成,排序和體積控制的集成及其在體外胚胎培養中的應用
Integration of Droplet Generation, Sorting and Volume Manipulation in Microfluidic System and its Application on In Vitro Embryo Culture
指導教授: 饒達仁
Yao, Da-Jeng
口試委員: 李明蒼
Lee, Ming-Tsang
徐文祥
Hsu, Wen-Syang
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 56
中文關鍵詞: 生物晶片微流體系統液株形成液滴傳輸和回收靜態和動態胚胎培養
外文關鍵詞: Biochip, Continue microfluidic system, Droplet formation, Droplet expansion and restoration, Static and dynamic embryo culture
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近幾年來微流控生物晶片技術透過使用微流控技術的整合能夠完成生物與化學分析所需的所有功能,並且可以取代現行常使用的生化分析儀器。液滴的微流體對生物樣品的大小提供了高度精確的控制,以满足胚胎在微流體培養的需求,透過為流體中胚胎培養的大小可能從皮米公升(pL)到奈米公升(nL)不等。由於聚二甲基矽氧烷(Polydimethylsiloxane, PDMS)具備其優異的生物相容性和製程簡單,在生醫領域發展中是常見的微流體装置的材料。
    本文中,利用PDMS與玻璃基板透過接合(Bonding)上開發了微流控生物醫學晶片,該晶片具備了四個關鍵性功能-混和液株的生成、分選機制、傳輸機制與回收,透過這些功能提供在小鼠胚胎系统中用以評估生殖醫學。本文中設計的微流體晶片主通道寬度為1200μm,其微流道高度為500μm。採用三入三出的流道設計以研究五天胚胎培養的實驗。實驗的對照組則是採用小鼠胚胎約為100μm進行測試。實驗結果說明,靜態通道的液株組有79.3%的成功率略低於傳統組的95%。而動態通道的液株組則有23-26%的成功率相比於傳統組的83-85%的成功率。透過實驗證明了液株的微流體系统可以產生皮米公升到奈米公升的體積範圍的液株。同時也證明了在微流體系统的動態培養胚胎能夠達成生成、分選、傳輸與回收。


    Recently microfluidic biochip techniques are strikingly replacing conventional biochemical analyzers through their integration of all functions necessary for biochemical analysis using microfluidics. The microfluidics of droplets offer exquisite control over the size of microlitre samples to satisfy the requirements of embryo culture, which might involve a size ranging from picolitre to nanolitre. Polydimethylsiloxane (PDMS) is the conventional material for the fabrication of microfluidic devices due to its excellent biocompatibility and simplicity of fabrication. Herein, we developed a microfluidic biomedical chip on a PDMS substrate that integrated four key functions -- generation of a droplet of an emulsion, sorting, expansion and restoration, which were employed in a mouse embryo system to assess reproductive medicine.
    The main channel of the designed chip had width 1200 μm and height 500 μm. The designed microfluidic chips possessed six sections, cleaved into three inlets and three outlets, to study the key functions with five-day embryo culture. The control part of the experiment was conducted with mouse embryos (100 μm) for testing. The outcomes of our work illustrate that the rate of success of the static channel liquid beads group (79.3 %) is only slightly less than that of a traditional group (95 %). Whereas the rate of success of the dynamic channel liquid beads group (23-26%) as compared to tradition group (83-85%). It clearly demonstrates that a droplet-based microfluidic system can produce a droplet in a volume range from picolitre to nanolitre. In dynamic culture using microfluidic system the major four functions are performed.

    Chinese Abstract (中文摘要).....................................................................................................i English Abstract.........................................................................................................................ii Acknowledgements…………………………………………………………………………...iii Contents…………………………….……….……………………………………………........v Figures Captions………………………………………………………………………..........vii Table Captions……………….….……………………………................................................xi Graph Captions………………………………………………………………………………xii Abbreviations………………………………………………………………………………. xiii Chapter 1. Introduction ………………………………………………………......................1 Chapter 2. Background and literature survey …………………………………..................4 Chapter 3. Objective and motivations ……………………………………………………...6 Chapter 4. Experimental methodology……………………………………………………..7 4.1 Mask Design ………………………………………………………..................8 4.2 Chip design simulation software verification………………………………….9 4.3 Wafer process………………………………………………………………...11 4.4 PDMS turning and spin coating ………………………………….………….14 4.5 Coating on chip ………………………………………………….…………..17 4.5.1 Bead formation (Droplet generation) ……………………………….18 4.5.2 Liquid bead screening (Embryo sorting) …………………................19 4.5.3 Liquid bead volume expansion (Droplet expansion) …….………….20 4.5.4 Liquid bead replacement (Droplet replacement) ……….……………22 4.6 Combination with mouse embryo culture …………………….……………..23 Chapter 5. Results and discussions…………………………………………………..…….26 5.1 Channel design and its functions ………………………………….................27 5.2 Mouse embryo development stages………………………………………….28 5.3 Methods for embryo culture …………………………....................................29 5.3.1 Experimental method of traditional group ………………….................30 5.3.2 Experimental method of inlet group……………………………………32 5.4 Static culture in channel liquid beads group ………………….......................35 5.5 Dynamic culture of mouse embryos …………………………………………38 5.5.1 Liquid beads generation (Droplet generation)………………………….38 5.5.2 Liquid beads screening (droplet sorting)……………………………….39 5.5.3 Liquid beads expansion (droplet expansion)…………………………...40 5.5.4 Liquid beads replacement (droplet replacement)………………………42 5.6 Dynamic culture in channel liquid beads group ………………………................43 5.7 Basic embryo stages and their development period in microfluidic channel…….48 Chapter 6. Conclusions…………………………………………………………………......51 6.1 Perform static embryo culture experiment……………………………………….51 6.2 Perform dynamic embryo culture experiment……………………………………51 Chapter 7. Future work…………………………………………………………………….53 References…………………………………………………………………………………...54

    [1] N. T. Nguyen, M. Hejazian, C. H. Ooi, and N. Kashaninejad, Micromachines 2017, 8, 186.
    [2] Y. Saylan and A. Denizli, Micromachines 2019, 10, 766.
    [3] S. O. Catarino, R. O. Rodrigues, D. Pinho, J. M. Miranda, G. Minas, and R. Lima, Micromachines 2019, 10, 593.
    [4] S. W. Ahn, S. S. Lee, S. J. Lee, and J. M. Kim, Chem. Eng. Sci. 2015, 126, 237.
    [5] S. Dash and S. Mohanty, Electrophoresis 2014, 35, 2656.
    [6] Y.-L. Chiu. R. A. K. Yadav, H.-Y. Huang, Y.-W. Wang, and D.-J. Yao, Micromachines 2019, 10, 756.
    [7] C. L. Hansen, E. Skordalakes, J. M. Berger, S. R. Quake, Proc. Natl. Acad. Sci. USA 2002, 99, 16531.
    [8] S. Takayama, E. Ostuni, P. L. Duc, K. Naruse, D. E. Ingber, and G. M. Whitesides, Nature 2001, 411, 1016.
    [9] J. Son, R. Samuel, B. K. Gale, D. T. Carrell, and J. M. Hotaling, Biomicrofluidics 2017, 11, 054106.
    [10] A. R. Jafek, S. Harbertson, H. Brady, R. Samuel, and B. K. Gale, Anal. Chem. 2018, 90, 7190.
    [11] A. Bange, H. B. Halsall, and W. R. Heineman, Biosens. Bioelectron. 2005, 20, 2488.
    [12] N. Shembekar, C. Chaipan, R. Utharala, and C. A. Merten, Lab Chip 2016, 16, 1314.
    [13] Y. Xia and G. M. Whitesides, Annu. Rev. Mater. Sci. 1998, 28, 153.
    [14] J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. Schueller, and G. M. Whitesides, Electrophoresis 2000, 21, 27.
    [15] P. Kim, K. W. Kwon, M. C. Park, S. H. Lee, and S. M. Kim, Biochip J. 2008, 2, 1.
    [16] D. Qin, Y. Xia, and G. M. Whitesides, Nat. Protoc. 2010, 5, 491.
    [17] C. W. Wu and G. C. Gong, IEEE Sens. J. 2008, 8, 465.
    [18] J. W. Park, S. Na, M. Kang, S. J. Sim, and N. L. Jeon, BioChip J. 2017, 11, 180.
    [19] J. H. Koschwanez, R. H. Carlson, and D. R. Meldrum, PLoS ONE 2009, 4, 4572.
    [20] X. Nan, X. Zhu, and Z. Ni, Prog. Chem. 2011, 23, 1945.
    [21] A. Huebner, S. Sharma, M. S. Art, F. Hollfelder, J. B. Edel, and A. J. DeMello, Lab Chip 2008, 8, 1244.
    [22] P. Zhu and L. Wang, Lab Chip 2017, 17, 34.
    [23] D. J. Collins, A. Neild, A. DeMello, A. Q. Liu, and Y. Ai, Lab Chip 2015, 15, 3439.
    [24] L. L. A. Adams, T. E. Kodger, S. H. Kim, H. C. Shum, T. Franke, and D. A. Weitz, Soft Matter 2012, 8, 10719.
    [25] Q. Zhang, T. Wang, Q. Zhou, P. Zhang, Y. Gong, H. Gou, J. Xu, and B. Ma, Sci. Rep.
    2017, 7, 41192.
    [26] R. Zilionis, J. Nainys, A. Veres, V. Savova, D. Zemmour, A. M. Klein, and L. Mazutis, Nat. Protoc. 2017, 12, 44.
    [27] P. Thurgood, S. Baratchi, C. Szydzik, J. Y. Zhu, S. Nahavandi, A. Mitchell, and K. Khoshmanesh, Sens. Actuators B Chem. 2018, 274, 645.
    [28] D. R. Gossett, H. T. K. Tse, S. A. Lee, Y. Ying, A. G. Lindgren, O. O. Yang, J. Rao, A. T. Clark, and D. D. Carlo, Proc. Natl. Acad. Sci. USA 2012, 109, 7630.
    [29] H. Y. Huang, C. H. Tien, C. J. Li, S. K. Fan, C. H. Liu, W. S. Hsu, and D. J. Yao, "Digital Microfluidic Dynamic Culture of Mammalian Embryos on an Electrowetting on Dielectric (EWOD) Chip," PLOS ONE, vol. 10, 2015.
    [30] S. Köster, H. Duan, J. J. Agresti, A. Wintner, C. Schmitz, A. C. Rowat, C. A. Merten, D. Pisignano, A. D. Griffithsc, and D. A. Weitz, "Drop-based microfluidic devices for encapsulation of single cells," Lab on a Chip, vol. 8, pp. 1110-1115, 2008.
    [31] D. H. Yoon, T. Sekiguchi, and S. Shoji, "Selective droplet sampling flow system using minimum number of horizontal pneumatic valves formed by single step PDMS molding," International Conference on Miniaturized Systems for Chemistry and Life Sciences vol. 2, pp. 1085-1087, 2010.
    [32] V. Van Steijn, M. T. Kreutzer, "Predictive model for the size of bubbles and droplets created in microfluidic T-junctions," Lab on a Chip, vol. 10, pp. 2513-2518, 2010.
    [33] R. X. Chen, "Experimental study on droplet generation in flow focusing devices considering a stratified flow with viscosity contrast," Chemical Engineering Science, vol. 163, pp. 1-10, 2017.

    QR CODE