簡易檢索 / 詳目顯示

研究生: 方漢濱
論文名稱: 硫屬合金相變化型多層膜結構元件之附著特性研究
指導教授: 周麗新
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2005
畢業學年度: 94
語文別: 中文
論文頁數: 110
中文關鍵詞: 硫屬合金相變化多層膜附著力應力
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 相變化記憶體(Phase change memory)是一種逐漸受到重視,且目前有相當多單位投入研究的新世代記憶體,它具有高速存取以及非揮發性的兩項重要特點,及其他如非破壞讀取、消耗電流低、多階儲存、單位記憶容量大及製作成本低等優點。
      本研究以SiO2/Si為基板鍍製Ge2Sb2Te5(1000Å)單層膜及TiW(1000Å)/Ge2Sb2Te5(1000Å)雙層膜,Ge2Sb2Te5單層膜初鍍時的應力約為零,但在雙層膜內的TiW膜初鍍時卻有約400 ~ 1000(Mpa)的壓應力,TiW膜內相對較大的壓應力,可能與TiW靶材內的W原子反彈較多的Ar原子撞擊TiW膜有關。前述單層膜及雙層膜試片於初鍍時的附著力分別為100.9nt及8.2nt,在230℃(或400℃)快速熱退火處理後附著力會分別減小及增加到41.9(或22.1nt)及18.9(或24.1nt),雙層膜內的TiW膜的應力並會減小。Energy Dispersive Spectrometer (EDS)結果顯示所有試片皆由Ge2Sb2Te5/SiO2的界面斷裂,而由Secondary Ion Mass Spectrometer (SIMS)縱剖面觀察發現各膜層間原子會互相擴散,這可能增加TiW/Ge2Sb2Te5界面間的附著力,使得斷裂易發生在Ge2Sb2Te5/SiO2界面,此外,薄膜附著力與應力明顯相關。


    目錄……………………………………………………………………….....I 圖目錄…………………………………………………………………........V 表目錄………………………………………………………………………IX 摘要…………………………………………………………………………XI 第一章 簡介…………………………………………………………….....1 1.1簡介……………………………………………………………………...1 1.2 發展現況………………………………………………………………..3 第二章 文獻回顧………………………………………………………...6 2.1 Ovonic Switch…………………………………………………………6 2.2 記憶原理………………………………………………………………..8 2.3 元件結構……………………………………………………………….10 2.4 記憶層………………………………………………………………….13 2.5 電極…………………………………………………………………….16 2.6 材料特性………………………………………………………………18 2.6.1 Ge2Sb2Te5材料分析………………………………………………..18 2.6.2 TiW材料分析……………………………………………………...22 2.7 衰退現象(Fatigue) ………………………………………………...23 2.7.1 晶粒殘留(Accumulation of segregated crystallites) ………………23 2.7.2 邊緣效應(Side effect) ……………………………………………...25 2.7.3 電極毀損(Electrodes damage) ……………………………………..26 2.7.4 界面擴散(Interdiffusion) …………………………………………..27 2.7.5 材料流動(Materials flow) …………………………………………27 2.8 工作電流大小…………………………………………………………29 2.9 界面附著(Interface adhesion) ………………………………………...34 2.10 應力效應(Stress effect) ……………………………………………..37 2.10.1 應力來源…………………………………………………………..37 2.10.1 .1 內應力(Internal stress) ……………………………………..37 2.10.1 .2 熱應力(Thermal stress) …………………………………….38 2.10.1 .3 相變化應力(Phase transformation stress) ……………....38 2.10.1 .4 磊晶應力(Epitaxial stress) ………………………………...39 2.10.2 附著力與應力關係…………………………………………….39 2.10.3 雙軸彈性模數與熱膨脹係數………………………………...40 2.10.4 應力鬆弛(Stress relaxation) …………………………………42 2.10.5 Ge2Sb2Te5薄膜應力行為……………………………………….46 2.11 研究目的…………………………………………………………..47 第三章 實驗方法與步驟………………………………………………....48 3.1 薄膜性質與應力分析………………………………………………...48 3.1.1 基板清洗…………………………………………………………....51 3.1.1.1 清洗燒杯………………………………………………………….51 3.1.1.2 清洗基板………………………………………………………….51 3.1.2 薄膜的製備…………………………………………………………52 3.1.3 薄膜量測與分析……………………………………………………53 3.1.3.1 鍍膜速率量測……………………………………………………53 3.1.3.2 組成分析…………………………………………………………53 3.1.3.3 表面形態分析……………………………………………………53 2.1.3.4 元素分析…………………………………………………………54 2.1.3.5 附著力量測………………………………………………………54 3.1.3.6 薄膜應力量測……………………………………………………54 3.2 使用儀器簡介………………………………………………………..55 3.2.1 6吋真空磁控濺鍍系統…………………………………………..55 3.2.2 快速加熱退火爐(RTA) ……………………………………………56 3.2.3 X-ray 繞射分析儀 ….…………………………………………...56 3.2.4 掃描式電子顯微鏡(SEM) ………………………………………...57 3.2.5 原子力顯微鏡(AFM) ……………………………………………..57 3.2.6 薄膜附著力測試系統(Adhesion Tester) ………………………….57 3.2.7 薄膜應力量測儀(Thin-Film Stress) ………………………………57 第四章 結果與討論……………………………………………………..58 4.1 Ge2Sb2Te5薄膜性質分析…………………………………………..58 4.1.1 鍍膜速率量測與分析……………………………………………..58 4.1.2 組成成份分析……………………………………………………..59 4.2 TiW薄膜性質分析………………………………………………...60 4.2.1 鍍膜速率量測與分析……………………………………………..60 4.2.2 組成成份分析……………………………………………………..61 4.3 晶相分析…………………………………………………………….62 4.4 表面形態分析……………………………………………………….64 4.5 附著力及EDS觀察…………………………………………………71 4.5.1 矽基板上膜層附著力比較………………………………………..71 4.5.2 氧化層上膜層附著力比較………………………………………..73 4.5.3 氧化層上膜層EDS觀察………………………………………….76 4.6 界面擴散…………………………………………………………….84 4.7 應力分析…………………………………………………………….87 4.7.1 初鍍膜及RTA熱處理後的薄膜應力…………………….………87 4.7.2 薄膜應力對溫度關係……………………………………………..91 4.8 附著力、應力與擴散行為關係討論……………………………….96 第五章 結論……………………………………………………………..103 參考資料…………………………………………………………………105 圖目錄 圖2.1.1 Ovonic Switch 之SNDC曲線……………………………….....8 圖2.2.1 SET、RESET、READ電脈衝示意圖…………………………10 圖2.3.1 平面結構型相變化記憶胞的膜層結構……………………11 圖2.3.2 環型相變化記憶胞的膜層結構…………………………….11 圖2.3.3 熱阻型相變化記憶胞的膜層結構…………………………12 圖2.3.4 邊緣接觸型記憶胞的膜層結構………………….. …………12 圖2.3.5 1T1R插栓結構記憶體元件…………………………………….13 圖2.4.1 GST結晶時間和溫度的關係………………………... …………15 圖2.6.1.1 GeTe-Sb2Te3擬二元合金系各化合物之DSC量測………….19 圖2.6.1.2 Ge2Sb2Te5薄膜隨溫度上升片電阻變化的情形……..……….20 圖2.6.1.3 Ge2Sb2Te5的NaCl晶格結構…………………………………21 圖2.6.1.4 TiW材料的相圖……………………………………………....22 圖2.7.1.1 As20Sb10Te70的電阻對寫擦週期的關係……………………...25 圖2.7.3.1 K. Nakayama 0.6μm的元件結構…………………………....27 圖2.7.5.1 微量滲氮後(N=7at.%)於2*107次寫擦後的記憶胞I-V特性..28 圖2.7.5.2 微量滲氮(N=7at.%)對寫擦次數的改善……………………...29 圖2.8.1 As20Sb10Te70的IReset大小對脈衝寬度圖……………………….30 圖2.8.2 Reset脈衝能量和寫擦次數的關係………………………….....31 圖2.8.3 接觸面積和IRESET的關係………………………………………33 圖2.8.4 擁有附加加熱層的插栓結構…………………………………...33 圖2.9.1 GaAs或InP的介面原子的(a)平行(anti-phase)及(b)垂直(in-phase)鍵結………………………………………………………………36 圖2.9.2 GaAs/GaAs接合晶圓在600℃時退火時間對介面斷裂能圖…36 圖2.10.2 黏著應力σ對裂開位移量δ的圖形…………………….....40 圖2.10.3 Gedanken實驗的雙軸壓縮模型………………………………42 圖2.10.4.1 溫度變化時Ge2Sb2Te5的應力(σ)鬆弛現象………………..45 圖2.10.4.2 Ge2Sb2Te5在80℃時的應力(σ)鬆弛現象…………………..45 圖2.10.5.1 Ge2Sb2Te5升降溫時應力對溫度關係圖……………………47 圖3.1.1 矽基板上記憶膜性質分析實驗流程圖………………………..48 圖3.1.2 氧化層上記憶膜與電極薄膜性質分析實驗流程圖…………..49 圖3.1.3 薄膜應力分析實驗流程圖……………………………………...50 圖3.2.1.1 真空濺鍍系統示意圖…………………………………………55 圖3.2.1.2 試片架與承接座示意圖………………………………………56 圖4.1.1 Ge2Sb2Te5直流鍍膜速率之空間分佈………………………….59 圖4.2.1 TiW 鍍膜速率與試片位置關係圖…………………………….61 圖4.3.1 初鍍Ge2Sb2Te5膜的X-ray繞射圖…………..………………….63 圖4.3.2 230℃的RTA熱退火處理後Ge2Sb2Te5膜的X-ray繞射圖…..63 圖4.3.3 400℃的RTA熱退火處理後Ge2Sb2Te5膜之X-ray繞射圖…..64 圖4.4.1 實驗(a) Ge2Sb2Te5初鍍膜之表面型態…………………………...67 圖4.4.2 實驗(a) Ge2Sb2Te5於230℃熱退火處理後之表面型態…………67 圖4.4.3 實驗(a) Ge2Sb2Te5於400℃熱退火處理後之表面型態…………67 圖4.4.4 實驗(b) Ge2Sb2Te5初鍍膜之表面型態…………………………..68 圖4.4.5 實驗(b) Ge2Sb2Te5於230℃RTA熱退火處理後之表面型態……69 圖4.4.6 實驗(b) Ge2Sb2Te5於400℃RTA熱退火處理後之表面型態……70 圖4.5.1.1 Si基板上三種膜層結構的剖面圖……………………………...73 圖4.5.2.1 氧化層上單層膜與雙層膜結構的剖面圖……………………..74 圖4.5.2.2 Ge2Sb2Te5單層膜的附著力與Ge2Sb2Te5膜厚關係圖……….75 圖4.5.2.3 TiW/Ge2Sb2Te5雙層膜的附著力與TiW膜厚關係圖………..75 圖4.5.3.1(a) Ge2Sb2Te5/SiO2/Si結構的初鍍膜脫附區域SEM圖……………..78 圖4.5.3.1(b) Ge2Sb2Te5/SiO2/Si結構的初鍍膜A脫附區EDS圖……………..78 圖4.5.3.1(c) Ge2Sb2Te5/SiO2/Si結構的初鍍膜B脫附區EDS圖……………..78 圖4.5.3.2 (a) Ge2Sb2Te5/SiO2/Si結構及230℃RTA後脫附區域SEM圖…….79 圖4.5.3.2 (b) Ge2Sb2Te5/SiO2/Si結構及230℃RTA後A脫附區EDS圖…….79 圖4.5.3.2 (c) Ge2Sb2Te5/SiO2/Si結構及230℃RTA後B脫附區EDS圖…….79 圖4.5.3.3 (a) Ge2Sb2Te5/SiO2/Si結構及400℃RTA後脫附區域SEM圖…….80 圖4.5.3.3 (b) Ge2Sb2Te5/SiO2/Si結構及400℃RTA後A脫附區EDS圖…….80 圖4.5.3.3 (c) Ge2Sb2Te5/SiO2/Si結構及400℃RTA後B脫附區EDS圖…….80 圖4.5.3.4 (a) TiW/Ge2Sb2Te5/SiO2/Si結構的初鍍膜脫附區域SEM圖……….81 圖4.5.3.4 (b) TiW/Ge2Sb2Te5/SiO2/Si結構的初鍍膜A脫附區EDS圖……….81 圖4.5.3.4 (c) TiW/Ge2Sb2Te5/SiO2/Si結構的初鍍膜B脫附區EDS圖……….81 圖4.5.3.5 (a) TiW/Ge2Sb2Te5/SiO2/Si結構及230℃RTA後脫附區域SEM圖..82 圖4.5.3.5 (b) TiW/Ge2Sb2Te5/SiO2/Si結構及230℃RTA後A脫附區EDS圖..82 圖4.5.3.5 (c) TiW/Ge2Sb2Te5/SiO2/Si結構及230℃RTA後B脫附區EDS圖..82 圖4.5.3.6 (a) TiW/Ge2Sb2Te5/SiO2/Si結構及400℃RTA後脫附區域SEM圖..83 圖4.5.3.6 (b) TiW/Ge2Sb2Te5/SiO2/Si結構及400℃RTA後B脫附區EDS圖..83 圖4.6.1 初鍍膜之縱深濃度分布………………………………………………..85 圖4.6.2 230℃RTA熱處理後之縱深濃度分布……………………………….85 圖4.6.3 400℃RTA熱處理後之縱深濃度分布……………………………….86 圖4.7.1.1 Ge2Sb2Te5單層膜應力與厚度關係圖……………………………...89 圖4.7.1.2 雙層膜中TiW膜估計應力與TiW膜厚度關係圖……………90 圖4.7.2.1 Ge2Sb2Te5單層膜500Å時的應力與溫度關係圖………………….93 圖4.7.2.2 Ge2Sb2Te5單層膜1000Å時的應力與溫度關係圖………………..93 圖4.7.2.3 Ge2Sb2Te5單層膜2000Å時的應力與溫度關係圖………………..94 圖4.7.2.4 雙層膜中TiW膜(500Å)估計應力對溫度關係圖……………..94 圖4.7.2.5 雙層膜中TiW膜(1000Å)估計應力對溫度關係圖……….……95 圖4.7.2.6 雙層膜中TiW膜(2000Å)估計應力對溫度關係圖……….……95 表目錄 表1.2.1 各形式記憶體元件的比較……………………………………...5 表2.5.1 文獻中曾發表的相變化記憶體元件………………………….17 表2.6.1.1 GeTe-Sb2Te3擬二元非晶態合金熱分析結果……………….19 表2.6.1.2 Ge2Sb2Te5結晶和非晶的電子電動遷移率………………….21 表2.6.1.3 Ge2Sb2Te5的物性參數……………………………………….21 表2.6.2.1 TiW(1:9)的物性參數…………………………………………23 表2.8.1 Intel對PRAM規格的計畫……………………………………33 表2.10.3 Ge4Sb1Te5、Ge2Sb2Te5及AgInSbTe的Yf及αf……………42 表2.10.4.1 Ge4Sb1Te5、Ge2Sb2Te5及AgInSbTe的△σelast及△σexp...45 表2.10.4.2 Ge4Sb1Te5、Ge2Sb2Te5及AgInSbTe的Qrate、Qiso及Qrel...46 表4.1.2.1 Ge2Sb2Te5成分濃度之空間分佈…………………………….60 表4.2.2 TiW成分濃度之空間分佈…………………………………….61 表4.4.1 洪學長實驗(a)與本實驗(b)的條件比較………………………..65 表4.4.2 Ge2Sb2Te5薄膜的粗糙度比較…………………………………66 表4.5.1.1 Ge2Sb2Te52000Å單層膜在Si基板上的附著力…………….72 表4.5.1.2 三種膜層結構在Si基板上的附著力比較…………………...72 表4.5.2.1 Ge2Sb2Te5單層膜和TiW/ Ge2Sb2Te5雙層膜在SiO2/Si基板上的附著力……………………………………………………...75 表4.7.1.1 Ge2Sb2Te5單層膜應力……………………………………….88 表4.7.1.2 雙層膜中TiW膜的估計應力…………………..…………...90

    1. 莊達人, “ VLSI 製造技術”,5ed, 高立圖書(2002), Ch.1,p.1-11
    2. K. F. Strauss , T. Daud, “Overview of Radiation Tolerant Unlimited Write Cycle Non-Volatile Memory”, Aerospace Conf., IEEE Proc. (2000), p.399-408
    3. Lai, S.;Electron Devices Meeting, 2003. IEDM '03 Technical Digest. IEEE
    4. T. Lowrey, “Ovonic Unified Memory”, Ovonyx Inc.(1999)
    5. S. Lai, T. Lowrey, “ OUM – A 180nm Nonvolatile Memory Cell Element Technology For Stand Alone and Embedded Applications”, Conf. IEEE Proc. (2001), p.803-806
    6. J. Maimon, E. Spall, R. Quinn, S. Schnur, “Chalcogenide-Based Non-Volatile Memory Technology”, Conf. IEEE Proc.(2001),p.2289-2294
    7. A. Pirovano, A. L. Lacaita, D. Merlani, A. Benvenuti, F. Pellizzer, R. Bez, “Electronic Switching Effect in Phase-Change Memory Cells”, IEDM (2002), p.923-926
    8. S. Tyson, G. Wicker, T. Lowrey, S. Hudgens, K. Hunt, “Nonvolatile, High Density, High Performance Phase-Change Memory”, Aerospace Conf., IEEE Proc. (2000), p.385-390
    9. D. P. Gosain, M. Nakamura, T. Shimizu, M. Suzuki, S. Okano, “Nonvolatile Memory Based on Reversible Phase Transistion Phenomena in Telluride Glasses”, Jpn. J. Appl. Phys. Vol 28, No.6 (1989),p.1013-1018
    10. K. Nakayama, T. Kitagawa, M. Ohmura, M. Suzuki, “Nonvolatile Memory Based on Phase Transition in Chalcogenide Thin Film”, Jpn. J. Appl. Phys. Vol 32, No.1 (1993), p.564-569
    11. K. Nakayama, K. Kojima, F. Hayakawa, Y. Imai, A. Kitagawa, M. Suzuki, “Submicron Nonvolatile Memory Cell Based on Reversible Phase Transition in Chalcogenide Glasses”, Jpn. J. Appl. Phys. Vol 39, No.11(2000),p.6157-6161
    12. K. Nakayama, T. Kitagawa, K. Hashimoto, K. Ohtuka, A. Kitagawa, ”Nonvolatile Memory Based on Reversible Phase Transition in Chalcogenide Semiconductor Thin Film”, Elec. Man. Tech. Sym., Proc. 1993 Jpn. Intl. (1993) , p.93-96
    13. S. R. Ovshinsky, “Reversible Electrical Switching Phenomena in Disordered Structures “ Phys. Rev. Lett. , Vol. 21, No.20 (1968) , p. 1450-1453
    14. A. Madan, M. P. Shaw “ The Physics and Applications of Amorphous Semiconductors”, Academic Press(New York)(1988), Ch.4-Ch.5, p.318-454
    15. D. Alder, “Switching Phenomena in Thin Films”, J. Vac. Sci. Technol., Vol. 10, No. 5 (1973),p.728-738
    16. S. Prakah, S. Asokan, D. B. Ghare, “Easily reversible memory switching in Ge-As-Te glasses”, J. Phys. D: Appl. Phys. Vol.29 (1996), p.2004-2008
    17. S. R. Ovshinsky, “An Introduction of Ovonic Research”, J. Non-Cryst. Solids, Vol. 2 (1970), p. 99-106
    18. D. Alder, S. C. Moss, “Amorphous Memories and Bistable Switches”, J. Vac. Sci. Technol., Vol. 9, No. 4 (1972), p.1182-1189
    19. R. G. Neale, D. L. Nelson, G. E. Moore, “Nonvolatile and reprogrammable, the read-mostly memory is here”, Electronics, Vol.28 (1970), p.56-60
    20. Y.H Ha ,J.H. Yi,H.Horii, VLSI Technology,2003.June 10-12 , p.175-176
    21. Horii, H.; Yi, J.H.; Park, J.H.; Ha, Y.H.; Baek, I.G.; Park, S.O.; Hwang, Y.N.; Lee, S.H.; Kim, Y.T.; Lee, K.H.; U-In Chung; Moon, “A Novel cell Technology Using N-doped GeSbTe Films for Phase Change RAM”, 2003 Symposium on VLSI Technology Digest of Technical Papers, 10-12 June 2003, p.177 – 178
    22. J.Maimon, K.Hunt, J.Rodgers, L.Burcin, and K.Knowles,Proceedings of Nonvolatile Memory Technology Symposium,Honolulu,HI(2002)
    23. S. Tyson, G. Wicker, T. Lowrey, S. Hudgens, and K. Hunt, 2000 IEEE
    Proceedings of Aerospace Conference, Big Sky, MT ~IEEE, New York,
    2000!, p. 385–390.
    24. Maimon, R. Quinn, and S. Schnur, 2001 IEEE Proceedings of Aerospace
    Conference, Big Sky, MT ~IEEE, New York, 2001!, p. 2289–2294.
    25. Lai and T. Lowrey, Tech. Dig. - Int. Electron Devices Meet. 36.5.1 (2001)
    26. Gill, T. Lowrey, and J. Park, Digest of Technical Papers of International
    Solid-State Circuits Conference (2002), p.202.
    27. D. W. Jacobson, “Importance of Accurate Thermal Analysis”, Proceedings of Annual Reliability and Maintainability Symposium (1989), p.465–469.
    28. Lai ,S.;Electron Devices Meeting, 2003.IEDM `03 Technical Digest.IEEE
    29. E. J. Evans, J. H. Helbers, S. R. Ovshinsky, “Reversible conductivity transformations in chalcogenide alloy films”, J. Non-crystal. Solids, Vol.2 (1970), p.334-346
    30. L. A. Coward, “Experimental Evidence of Filament Forming in Non-Crystalline Chalcogenide Alloy Threshold Switch”, J. Non-crystal. Solids, Vol.6 (1971), p.107-112
    31. R. Pinto, “Threshold and memory switching in thin films of the chalcogenide systems Ge-As-Te and Ge-As-Se”, The Solid Films, Vol. 7 (1971), p.391-404
    32. D. D. Thornburg, “Memory switching in amorphous arsenic triselenide”, J. Non-crystal. Solids, Vol.11 (1972), p.113-120
    33. G. C. Vezzoli , I. H. Pratt, “A Study of Switching in Non-crystalline Chalcogenide Thin Films at Room and Liquid Nitrogen Ambient Temperatures Using Aluminum and Molybdenum Electodes”, Thin Solid Films, Vol. 14 (1972), p.161-187
    34. C. H. Sie, M. P. Dugan, S. C. Moss, “Direct Observations of Filaments in the Ovonic Read-Mostly Memory”, J. Non-Cryst. Solids, Vol. 8-10 (1972), p.877-884
    35. R.Vogel Nicolaides, “Amorphous Semiconductor Devices Displaying Memory in One Polarity and Threshold Switching in the Opposite Polarity”, Appl. Phys. Lett., Vol. 24, No. 7 (1974), p.331-333
    36. C. L. Dargan, P. Burton, R. M. Redstall, “The fabrication and properties of chalcogenide glass memory arrays”, Int. J. Electronics, Vol.38, No.6(1975), p.711-727
    37. K. E. Petersen, D. Adler, “On state of amorphous threshold switches”,J. Appl. Phys., Vol.47, No.1(1976),p.256-263
    38. S. Bernacki, K. Hunt, S. Tyson, S. Hudgens, B. Pashmakov, Wally Czubatyj, ”Total Dose Radiation Response and High Temperature Imprint Characteristics of Chalcogenide Based RAM Resistor Elements”, IEEE Trans. on nuclear science, Vol. 47, No.6 (2000), p.2528-2533
    39. 張延瑜, 國立清華大學碩士論文, 1999.
    40. N. Yamada, E. Ohno,. N. Akahira, K. Nishiuchi, “Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory”, J. Appl. Phys. Vol 69, No.5 (1991), p.2849-2856
    41. I. Friedrich, V. Weidenholf, W. Njoroge, P. Franz, M. Wuttig, “Structural transformations of Ge2Sb2Te5 films studied by electrical resistance measurements”, J. Appl. Phys.,Vol. 87, No.9 (2000), p.4130-4134
    42. V. Hoffman, Solid State Technology(1983), p119
    43. S. E. Babcock, K. N. Tu, “Titanium-tungsten contacts to Si The effects of alloying on Schottky contact and on silicide formation”, J. Appl. Phys. Vol.53, No.10 (1982), p.6898-6905
    44. V. G. Glebovsky, E. A. Markaryants, E. V. Titov, Materials Letters, Vol.21(1994), p.89-93
    45. J.R. Bosnell and C.B. Thomas , “on the mechanism of Threshold and Memory Switcing in Glassy Chalcogenide Alloy Devices”,Phil.Mag,1973,vol27,p.665
    46. J. R. Bosnell, C. B. Thomas, “Preswitching Electrical Properties,’Forming’, and Swithcing in Amorphous Chalcogenide Alloy Threshold and Memory Devices”, Solid State Electronics, Vol.15 (1972), p1261-1271
    47. N. Yamada, Proc. SPIE, Vol.3109(1997),p.28
    48. 洪裕峰, 國立清華大學碩士論文, 2004
    49. T.Ohta,M.Uchida,K.Yoshioka,K.inoue,T.Akiyama,S.Furukawa,K.Kotera and S.Nakamur, SPIE,Vol.078(1989),p.27
    50. Dae-Hwan Kang, Dong-Ho Ahn, Ki-Bum Kim,a) J. F. Webb, and Kyung-Woo YiJ. “One-dimensional heat conduction model for an electrical phase change random access memory device with an 8F[sup 2] memory cell (F = 0.15 mu m)”, Appl. Phys., Vol. 94, No. 5, 1 September 2003
    51. Pirovano, A.; Lacaita, A.L.; Benvenuti, A.; Pellizzer, F.; Hudgens, S.; Bez, R.;
    Electron Devices Meeting, 2003. IEDM '03 Technical Digest. IEEE International , 8-10 Dec. 2003 ages:29.6.1 - 29.6.4
    52. 陳介方, 國立清華大學碩士論文, 2003
    53. F. Shi, K. Chang, and K. C. Hsieh, “Interface structure and adhesion of wafer-bonded GaN/GaN and GaN/AlGaN semiconductors”, J. Appl. Phys., Vol. 95, No. 3(2004),p909-912
    54. F. F. Shi, S. MacLaren, C. Xu, K. Y. Cheng, and K. C. Hsieh, “Hybrid-integrated GaAs/GaAs and InP/GaAs semiconductors through wafer bonding technology : Interface adhesion and mechanical strength”, J. Appl. Phys., Vol. 93, No. 9(2003), p.5750-5756
    55. G. G. Stoney, Proc. R. Soc. London, Ser. A 82(1909), p172-175
    56. J. A. Thornton, and D. W. Hoffman, “Internal stress in titanium, nickel, molybdenum, and tantalum films deposited by cylindrical magnetron sputtering”, J. Vac. Sci. Technol., Vol. 14, No. 1(1977),p164-168
    57. A. Witvrouw, and F. Spaepen, “Viscosity and elastic constants of amorphous Si and Ge”, J. Appl. Phys., Vol. 74, No. 12(1993),p7154-7161
    58. U. Laudahn, S. Fähler, H. U. Krebs, A. Pundt, M. Bicker, U. v. Hülsen, U. Geyer, R. Kirchheim, “Determination of elastic constants in thin films using hydrogen loading” , Appl. Phys. Lett. Vol. 74, No. 5(1999), p.647-649
    59. 汪建民主編, “材料分析”,1st,中國材料科學學會(1998), Ch.23,p.676
    60. T. P. Leervad Pedersen, J.Kalb, W. K. Njoroge, D. Wamwangi, M. Wuttig, and F. Spaepen, “Mechanical stresses upon crystallization in phase change materials”, Appl. Phys. Lett. Vol. 79, No. 22(2001), p.3597-3599
    61. J. Kalb, F. Spaepen, T. P. Leervad Pedersen, and M. Wuttig, “Viscosity and elastic constants of thin films of amorphous Te alloys used for optical data storage”, J. Appl. Phys., Vol. 94, No. 8(2003), p4908-4912
    62. F. C. Marques, P. Wickboldt, D. Pang, J. H. Chen, and W. Paul, “Stress and thermomechanical properties of amorphous hydrogenated germanium thin films deposited by glow discharge”, J. Appl. Phys., Vol. 84, no. 6(1998), p3118-3124
    63. Y. H. Ha, J. H. Yi, H. Horii, J. H. Park, S. H. Joo, S. O. Park, U-In Chung and J. T. Moon, “An Edge Contact Type Cell for Phase Change RAM Featuring Very Low Power Consumption”, 2003 Symposium on VLSI Technology Digest of Technical Papers.
    64. H. Zogg, S. Blunier, A. Fach, C. Maissen, P. Muller, “Thermal-mismatch-strain relaxation in epitaxial CaF2,BaF2-CaF2,and PbSe-BaF2-CaF2 layers on Si(111) after many temperature cycles”, Phys. Rev. B., Vol. 50, No. 15(1994), p10801-10810
    65. J. B. Vella, S. M. Smith, A. A. Volinsky, I. S. Adhihetty, “Adhesion Quantification of Post-CMP Copper to Amorphous SiN Passivation by NanoIndentation”, Mat. Res. Soc. Symp. Proc., Vol. 649(2001), Q6.1.1-Q6.1.6
    66.K. O’Donnell, J. Kostetsky, “Stress Controckl in NiV, Cr and TiW Thin Films used in UBM and Backside Metallization”, IMAPS Flipchips 2002.
    67.M. Ohring, “The Materials Science of Thin Films”, Academic Press(Boston), first edition(1992), p727-730
    68.W. Bruckner, F. Macionczyk, and G. Reiss., “Mechanical Properties of CuNi Films”Mat. Res. Soc. Symp. Proc., Vol.436(1997), p47-53
    69.R. Saha, R. B. Inturi, J. A. Barnard, “Effect of thickness and annealing on stress in tantalum and tantalum nitride thin film hard coatings”, Mat. Res. Soc. Symp. Proc., Vol.436(1997), p529-534
    70.C. Cabral, Jr., L. A. Clevenger, and R. G. Schad, “Compressive Stress increase with repeated thermal cycling in tantalum(oxygen) thin films”, Mat. Res. Soc. Symp. Proc., Vol.308(1993), p57
    71.D. Lide, “Handbook of Chemistry and Physics”, CRC Press, 72 edition(1991).
    72.C. Y. Ting, M. Wittmer, S. S. lyer, and S. B. Brodsky, “Interaction Between Ti and SiO2”, J. Electrochem .Soc., Vol. 131, No. 12(1984), p2934-2938

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE