研究生: |
陳建榮 Chen, Chien Jung |
---|---|
論文名稱: |
以醣胺多醣結合胜肽應用於胞內輸送及腫瘤標靶 A Multifunctional Glycosaminoglycan Binding Peptide for Intracellular Delivery and Tumor Targeting—From Basic Research to Translational Application |
指導教授: |
張大慈
Chang, Dah Tsyr |
口試委員: |
方韶瓏
洪建中 蘇士哲 周裕珽 張顥騰 鄭兆勝 |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 分子與細胞生物研究所 Institute of Molecular and Cellular Biology |
論文出版年: | 2015 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 151 |
中文關鍵詞: | 葡萄胺聚醣標靶胜肽 、腫瘤微環境 、癌標誌辨識 、標靶藥物運輸 、癌症抑制 |
外文關鍵詞: | glycosaminoglycan targeting peptide, tumor microenvironment, cancer biomarker, anti-tumor, targeted drug delivery |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
惡性腫瘤長期蟬聯全球十大死因首位。近年全球癌症發生率持續增加,死亡率也快速攀升。惡性腫瘤非但生長快速,且經由上皮細胞間質轉化(epithelial-mesenchymal transition、EMT)可侵入其他不同來源的組織或器官內滋生,因此治療性癌標靶藥物及癌標靶藥物運輸的研究與發展是近年備受重視的研究課題。癌變細胞表面分子與其腫瘤微環境間的交互作用相關,目前已知表皮細胞表面負電性蛋白聚醣為細胞外微環境之重要訊號傳遞受器複合體。腫瘤癥兆發生時細胞表面影響生長、分化、細胞外基質重組及癌轉移的蛋白聚醣及其附著之葡萄胺聚醣(Glycosaminoglycan、GAG)會隨之改變表現量與結構,影響腫瘤自分泌及旁分泌配體表現及補充,進而連通及放大腫瘤微環境間訊號傳遞。因此,腫瘤微環境間溝通之阻斷劑為當前研究新方向及醫療迫切需求。本研究率先鑑定一組能辨識細胞表面葡萄胺聚醣並可穿透細胞之短鏈胜肽(Glycosaminoglycan-binding peptide、GBP),對表皮癌細胞株選擇性高於正常細胞株,且組織微陣列切片染色顯示其對多種肺癌組織具高度辨識能力。利用同種移植之腫瘤小鼠模式研究重組蛋白eGFP-GBP於活體循環組織特異性,免疫化學染色結果顯示eGFP-GBP主要標的為皮下腫瘤處。在同一動物模式中,普魯士染色結果顯示攜帶GBP的磁性奈米粒子(GBP-conjugated magnetic nanoparticle、MNP-GBP)亦具標的至皮下腫瘤的能力。深入探討此新穎葡萄胺聚醣標靶胜肽序列與功能相關性,發現關鍵胺基酸組合特性,更進一步其能抑制腫瘤移行及侵襲。本研究成果已發表於國際期刊並獲證國內外專利,具體貢獻於新型抗癌胜肽設計、化學修飾抗癌藥物合成、及開發以GBP為基礎之表皮癌細胞用藥新型配方與傳輸系統。
Cancers are the leading causes of morbidity and mortality worldwide, among which epithelial lung, liver, stomach, colorectal and breast cancer rank the most common types in sequence. The most lethal aspect of cancer is its increasing capacity to metastasize from primary tumor to liver, lung and other organs through epithelial-to-mesenchymal transition (EMT). Proteoglycans are secreted on the surface of epithelial cells to act as signaling molecules of pericellular microenvironment. As a receptor complex, proteoglycans can switch cell response to certain pathophysiological stimuli. Expression and structure of proteoglycan or glycosaminoglycan (GAG) are significantly altered in cancer progression, leading to recruiting autocrine/paracrine receptor ligands to promote their bioactivities and also induce crosstalk among various families of receptors in tumor microenvironment. A glycosaminoglycan-binding cell penetrating peptide (GBP) can recognize cell surface negatively charged components and transport various cargoes into cells. GBP can probe epithelial cancers with abnormal expression of extracellular GAGs. Screening by multiple cancer tissue arrays has demonstrated that GBP prefers probing all lung tumor types, especially for epithelial cancers. GBP conjugation facilitates cargos eGFP (eGFP-GBP) and magnetic nanoparticle (MNP-GBP) to selectively target tumor site in vivo. Furthermore, GBP with characteristic sequence dependence displays significantly inhibitory effects on migration and invasion of human lung cancer cell. Taken together, our GBP related technology has been published in SCI papers and issued international and domestic patents. GBP could engage its capacity to be diagnostic imaging agent, supplementary therapeutic modality or functionalized vector for drug delivery.
1. Bratt P, Anderson MM, Mansson-Rahemtulla B, Stevens JW, Zhou C, Rahemtulla F: Isolation and characterization of bovine gingival proteoglycans versican and decorin. The International journal of biochemistry 1992, 24(10):1573-1583.
2. Maisonneuve P, Botteri E, Lowenfels AB: Screening and surveillance for the early detection of colorectal cancer and adenomatous polyps. Gastroenterology 2008, 135(2):710; author reply 710-711.
3. Aisner DL, Marshall CB: Molecular pathology of non-small cell lung cancer: a practical guide. American journal of clinical pathology 2012, 138(3):332-346.
4. Margaretten NC, Witschi HR: Effects of hyperoxia on growth of experimental lung metastasis. Carcinogenesis 1988, 9(3):433-439.
5. Mythreye K, Blobe GC: Proteoglycan signaling co-receptors: roles in cell adhesion, migration and invasion. Cellular signalling 2009, 21(11):1548-1558.
6. Frey H, Schroeder N, Manon-Jensen T, Iozzo RV, Schaefer L: Biological interplay between proteoglycans and their innate immune receptors in inflammation. The FEBS journal 2013, 280(10):2165-2179.
7. Sarrazin S, Lamanna WC, Esko JD: Heparan sulfate proteoglycans. Cold Spring Harbor perspectives in biology 2011, 3(7).
8. Zhang Z, Coomans C, David G: Membrane heparan sulfate proteoglycan-supported FGF2-FGFR1 signaling: evidence in support of the "cooperative end structures" model. The Journal of biological chemistry 2001, 276(45):41921-41929.
9. Rabenstein DL: Heparin and heparan sulfate: structure and function. Nat Prod Rep 2002, 19(3):312-331.
10. Vyas N, Goswami D, Manonmani A, Sharma P, Ranganath HA, VijayRaghavan K, Shashidhara LS, Sowdhamini R, Mayor S: Nanoscale organization of hedgehog is essential for long-range signaling. Cell 2008, 133(7):1214-1227.
11. Yu SR, Burkhardt M, Nowak M, Ries J, Petrasek Z, Scholpp S, Schwille P, Brand M: Fgf8 morphogen gradient forms by a source-sink mechanism with freely diffusing molecules. Nature 2009, 461(7263):533-536.
12. Thiery JP: Epithelial-mesenchymal transitions in tumour progression. Nature reviews Cancer 2002, 2(6):442-454.
13. Scanlon CS, Van Tubergen EA, Inglehart RC, D'Silva NJ: Biomarkers of epithelial-mesenchymal transition in squamous cell carcinoma. Journal of dental research 2013, 92(2):114-121.
14. Theocharis AD, Skandalis SS, Tzanakakis GN, Karamanos NK: Proteoglycans in health and disease: novel roles for proteoglycans in malignancy and their pharmacological targeting. The FEBS journal 2010, 277(19):3904-3923.
15. Hirabayashi K, Numa F, Suminami Y, Murakami A, Murakami T, Kato H: Altered proliferative and metastatic potential associated with increased expression of syndecan-1. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine 1998, 19(6):454-463.
16. Barbareschi M, Maisonneuve P, Aldovini D, Cangi MG, Pecciarini L, Angelo Mauri F, Veronese S, Caffo O, Lucenti A, Palma PD et al: High syndecan-1 expression in breast carcinoma is related to an aggressive phenotype and to poorer prognosis. Cancer 2003, 98(3):474-483.
17. Park H, Kim Y, Lim Y, Han I, Oh ES: Syndecan-2 mediates adhesion and proliferation of colon carcinoma cells. The Journal of biological chemistry 2002, 277(33):29730-29736.
18. Matsuda K, Maruyama H, Guo F, Kleeff J, Itakura J, Matsumoto Y, Lander AD, Korc M: Glypican-1 is overexpressed in human breast cancer and modulates the mitogenic effects of multiple heparin-binding growth factors in breast cancer cells. Cancer research 2001, 61(14):5562-5569.
19. Li Y, Miao L, Cai H, Ding J, Xiao Y, Yang J, Zhang D: The overexpression of glypican-5 promotes cancer cell migration and is associated with shorter overall survival in non-small cell lung cancer. Oncology letters 2013, 6(6):1565-1572.
20. Margareto J, Leis O, Larrarte E, Idoate MA, Carrasco A, Lafuente JV: Gene expression profiling of human gliomas reveals differences between GBM and LGA related to energy metabolism and notch signaling pathways. Journal of molecular neuroscience : MN 2007, 32(1):53-63.
21. Salmivirta M, Safaiyan F, Prydz K, Andresen MS, Aryan M, Kolset SO: Differentiation-associated modulation of heparan sulfate structure and function in CaCo-2 colon carcinoma cells. Glycobiology 1998, 8(10):1029-1036.
22. Vlodavsky I, Goldshmidt O, Zcharia E, Atzmon R, Rangini-Guatta Z, Elkin M, Peretz T, Friedmann Y: Mammalian heparanase: involvement in cancer metastasis, angiogenesis and normal development. Semin Cancer Biol 2002, 12(2):121-129.
23. Cooney CA, Jousheghany F, Yao-Borengasser A, Phanavanh B, Gomes T, Kieber-Emmons AM, Siegel ER, Suva LJ, Ferrone S, Kieber-Emmons T et al: Chondroitin sulfates play a major role in breast cancer metastasis: a role for CSPG4 and CHST11 gene expression in forming surface P-selectin ligands in aggressive breast cancer cells. Breast cancer research : BCR 2011, 13(3):R58.
24. Vijayagopal P, Figueroa JE, Levine EA: Altered composition and increased endothelial cell proliferative activity of proteoglycans isolated from breast carcinoma. Journal of surgical oncology 1998, 68(4):250-254.
25. Raman K, Kuberan B: Chemical Tumor Biology of Heparan Sulfate Proteoglycans. Current chemical biology 2010, 4(1):20-31.
26. Fujii M, Yusa A, Yokoyama Y, Kokuryo T, Tsunoda N, Oda K, Nagino M, Ishimaru T, Shimoyama Y, Utsunomiya H et al: Cytoplasmic expression of the JM403 antigen GlcA-GlcNH3+ on heparan sulfate glycosaminoglycan in mammary carcinomas--a novel proliferative biomarker for breast cancers with high malignancy. Glycoconjugate journal 2010, 27(7-9):661-672.
27. Asimakopoulou AP, Theocharis AD, Tzanakakis GN, Karamanos NK: The biological role of chondroitin sulfate in cancer and chondroitin-based anticancer agents. In vivo 2008, 22(3):385-389.
28. Yip GW, Smollich M, Gotte M: Therapeutic value of glycosaminoglycans in cancer. Molecular cancer therapeutics 2006, 5(9):2139-2148.
29. Gatza CE, Holtzhausen A, Kirkbride KC, Morton A, Gatza ML, Datto MB, Blobe GC: Type III TGF-beta receptor enhances colon cancer cell migration and anchorage-independent growth. Neoplasia 2011, 13(8):758-770.
30. Marchetti D, Nicolson GL: Human heparanase: a molecular determinant of brain metastasis. Adv Enzyme Regul 2001, 41:343-359.
31. Paulus W, Baur I, Dours-Zimmermann MT, Zimmermann DR: Differential expression of versican isoforms in brain tumors. J Neuropathol Exp Neurol 1996, 55(5):528-533.
32. Gohji K, Okamoto M, Kitazawa S, Toyoshima M, Dong J, Katsuoka Y, Nakajima M: Heparanase protein and gene expression in bladder cancer. J Urol 2001, 166(4):1286-1290.
33. De Klerk DP: The glycosaminoglycans of human bladder cancers of varying grade and stage. J Urol 1985, 134(5):978-981.
34. Zuo L, Zhang SM, Hu RL, Zhu HQ, Zhou Q, Gui SY, Wu Q, Wang Y: Correlation between expression and differentiation of endocan in colorectal cancer. World journal of gastroenterology : WJG 2008, 14(28):4562-4568.
35. Adany R, Heimer R, Caterson B, Sorrell JM, Iozzo RV: Altered expression of chondroitin sulfate proteoglycan in the stroma of human colon carcinoma. Hypomethylation of PG-40 gene correlates with increased PG-40 content and mRNA levels. The Journal of biological chemistry 1990, 265(19):11389-11396.
36. Sato T, Yamaguchi A, Goi T, Hirono Y, Takeuchi K, Katayama K, Matsukawa S: Heparanase expression in human colorectal cancer and its relationship to tumor angiogenesis, hematogenous metastasis, and prognosis. J Surg Oncol 2004, 87(4):174-181.
37. Lee H, Kim Y, Choi Y, Choi S, Hong E, Oh ES: Syndecan-2 cytoplasmic domain regulates colon cancer cell migration via interaction with syntenin-1. Biochem Biophys Res Commun 2011, 409(1):148-153.
38. Nobuhisa T, Naomoto Y, Ohkawa T, Takaoka M, Ono R, Murata T, Gunduz M, Shirakawa Y, Yamatsuji T, Haisa M et al: Heparanase expression correlates with malignant potential in human colon cancer. J Cancer Res Clin Oncol 2005, 131(4):229-237.
39. Mikami S, Ohashi K, Usui Y, Nemoto T, Katsube K, Yanagishita M, Nakajima M, Nakamura K, Koike M: Loss of syndecan-1 and increased expression of heparanase in invasive esophageal carcinomas. Jpn J Cancer Res 2001, 92(10):1062-1073.
40. Takaoka M, Naomoto Y, Ohkawa T, Uetsuka H, Shirakawa Y, Uno F, Fujiwara T, Gunduz M, Nagatsuka H, Nakajima M et al: Heparanase expression correlates with invasion and poor prognosis in gastric cancers. Lab Invest 2003, 83(5):613-622.
41. Hishinuma M, Ohashi KI, Yamauchi N, Kashima T, Uozaki H, Ota S, Kodama T, Aburatani H, Fukayama M: Hepatocellular oncofetal protein, glypican 3 is a sensitive marker for alpha-fetoprotein-producing gastric carcinoma. Histopathology 2006, 49(5):479-486.
42. Theocharis AD, Vynios DH, Papageorgakopoulou N, Skandalis SS, Theocharis DA: Altered content composition and structure of glycosaminoglycans and proteoglycans in gastric carcinoma. Int J Biochem Cell Biol 2003, 35(3):376-390.
43. Huang MF, Zhu YQ, Chen ZF, Xiao J, Huang X, Xiong YY, Yang GF: Syndecan-1 and E-cadherin expression in differentiated type of early gastric cancer. World J Gastroenterol 2005, 11(19):2975-2980.
44. Wiksten JP, Lundin J, Nordling S, Kokkola A, Haglund C: Comparison of the prognostic value of a panel of tissue tumor markers and established clinicopathological factors in patients with gastric cancer. Anticancer Res 2008, 28(4C):2279-2287.
45. Wiksten JP, Lundin J, Nordling S, Kokkola A, Haglund C: A prognostic value of syndecan-1 in gastric cancer. Anticancer Res 2000, 20(6D):4905-4907.
46. Wiksten JP, Lundin J, Nordling S, Lundin M, Kokkola A, von Boguslawski K, Haglund C: Epithelial and stromal syndecan-1 expression as predictor of outcome in patients with gastric cancer. Int J Cancer 2001, 95(1):1-6.
47. Wichert A, Stege A, Midorikawa Y, Holm PS, Lage H: Glypican-3 is involved in cellular protection against mitoxantrone in gastric carcinoma cells. Oncogene 2004, 23(4):945-955.
48. Kim NS, Lee HH, Jung CK, Jeon HM: Versican expression in tumor epithelial cells is correlated with a good prognosis in gastric cancer. Anticancer research 2014, 34(10):5613-5619.
49. Horai T, Nakamura N, Tateishi R, Hattori S: Glycosaminoglycans in human lung cancer. Cancer 1981, 48(9):2016-2021.
50. Masuda H, Ozeki T, Takazono I, Tanaka Y: Analyses of glycosaminoglycans in human lung cancer. Biochemical medicine and metabolic biology 1987, 37(3):366-373.
51. Grigoriu BD, Depontieu F, Scherpereel A, Gourcerol D, Devos P, Ouatas T, Lafitte JJ, Copin MC, Tonnel AB, Lassalle P: Endocan expression and relationship with survival in human non-small cell lung cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 2006, 12(15):4575-4582.
52. Song Z, Xu X, Wei S, Chen J, Zhou N: [The expression and clinical significance of heparanase in non-small cell lung cancer.]. Zhongguo Fei Ai Za Zhi 2008, 11(6):798-801.
53. Aviel-Ronen S, Lau SK, Pintilie M, Lau D, Liu N, Tsao MS, Jothy S: Glypican-3 is overexpressed in lung squamous cell carcinoma, but not in adenocarcinoma. Mod Pathol 2008, 21(7):817-825.
54. Vynios DH, Theocharis DA, Papageorgakopoulou N, Papadas TA, Mastronikolis NS, Goumas PD, Stylianou M, Skandalis SS: Biochemical changes of extracellular proteoglycans in squamous cell laryngeal carcinoma. Connect Tissue Res 2008, 49(3):239-243.
55. De Klerk DP, Lee DV, Human HJ: Glycosaminoglycans of human prostatic cancer. The Journal of urology 1984, 131(5):1008-1012.
56. Yang Y, Macleod V, Dai Y, Khotskaya-Sample Y, Shriver Z, Venkataraman G, Sasisekharan R, Naggi A, Torri G, Casu B et al: The syndecan-1 heparan sulfate proteoglycan is a viable target for myeloma therapy. Blood 2007, 110(6):2041-2048.
57. Ikuta M, Podyma KA, Maruyama K, Enomoto S, Yanagishita M: Expression of heparanase in oral cancer cell lines and oral cancer tissues. Oral Oncol 2001, 37(2):177-184.
58. Zynger DL, Everton MJ, Dimov ND, Chou PM, Yang XJ: Expression of glypican 3 in ovarian and extragonadal germ cell tumors. Am J Clin Pathol 2008, 130(2):224-230.
59. Masuda H, Ozeki T, Takazono I, Tanaka Y: Composition of glycosaminoglycans in human pancreatic cancer. Biochem Med Metab Biol 1989, 41(3):193-200.
60. Hrabar D, Aralica G, Gomercic M, Ljubicic N, Kruslin B, Tomas D: Epithelial and stromal expression of syndecan-2 in pancreatic carcinoma. Anticancer Res, 30(7):2749-2753.
61. Kleeff J, Ishiwata T, Kumbasar A, Friess H, Buchler MW, Lander AD, Korc M: The cell-surface heparan sulfate proteoglycan glypican-1 regulates growth factor action in pancreatic carcinoma cells and is overexpressed in human pancreatic cancer. The Journal of clinical investigation 1998, 102(9):1662-1673.
62. Labropoulou VT, Theocharis AD, Ravazoula P, Perimenis P, Hjerpe A, Karamanos NK, Kalofonos HP: Versican but not decorin accumulation is related to metastatic potential and neovascularization in testicular germ cell tumours. Histopathology 2006, 49(6):582-593.
63. Xu X, Quiros RM, Maxhimer JB, Jiang P, Marcinek R, Ain KB, Platt JL, Shen J, Gattuso P, Prinz RA: Inverse correlation between heparan sulfate composition and heparanase-1 gene expression in thyroid papillary carcinomas: a potential role in tumor metastasis. Clin Cancer Res 2003, 9(16 Pt 1):5968-5979.
64. Manon-Jensen T, Itoh Y, Couchman JR: Proteoglycans in health and disease: the multiple roles of syndecan shedding. The FEBS journal 2010, 277(19):3876-3889.
65. Kim AW, Xu X, Hollinger EF, Gattuso P, Godellas CV, Prinz RA: Human heparanase-1 gene expression in pancreatic adenocarcinoma. J Gastrointest Surg 2002, 6(2):167-172.
66. Maxhimer JB, Quiros RM, Stewart R, Dowlatshahi K, Gattuso P, Fan M, Prinz RA, Xu X: Heparanase-1 expression is associated with the metastatic potential of breast cancer. Surgery 2002, 132(2):326-333.
67. Ogishima T, Shiina H, Breault JE, Tabatabai L, Bassett WW, Enokida H, Li LC, Kawakami T, Urakami S, Ribeiro-Filho LA et al: Increased heparanase expression is caused by promoter hypomethylation and up-regulation of transcriptional factor early growth response-1 in human prostate cancer. Clin Cancer Res 2005, 11(3):1028-1036.
68. Brockstedt U, Dobra K, Nurminen M, Hjerpe A: Immunoreactivity to cell surface syndecans in cytoplasm and nucleus: tubulin-dependent rearrangements. Experimental cell research 2002, 274(2):235-245.
69. Purushothaman A, Hurst DR, Pisano C, Mizumoto S, Sugahara K, Sanderson RD: Heparanase-mediated loss of nuclear syndecan-1 enhances histone acetyltransferase (HAT) activity to promote expression of genes that drive an aggressive tumor phenotype. The Journal of biological chemistry 2011, 286(35):30377-30383.
70. Stanley MJ, Stanley MW, Sanderson RD, Zera R: Syndecan-1 expression is induced in the stroma of infiltrating breast carcinoma. American journal of clinical pathology 1999, 112(3):377-383.
71. Perrimon N, Bernfield M: Cellular functions of proteoglycans--an overview. Seminars in cell & developmental biology 2001, 12(2):65-67.
72. Elfenbein A, Rhodes JM, Meller J, Schwartz MA, Matsuda M, Simons M: Suppression of RhoG activity is mediated by a syndecan 4-synectin-RhoGDI1 complex and is reversed by PKCalpha in a Rac1 activation pathway. The Journal of cell biology 2009, 186(1):75-83.
73. Choi S, Lee E, Kwon S, Park H, Yi JY, Kim S, Han IO, Yun Y, Oh ES: Transmembrane domain-induced oligomerization is crucial for the functions of syndecan-2 and syndecan-4. The Journal of biological chemistry 2005, 280(52):42573-42579.
74. Szatmari T, Dobra K: The role of syndecan-1 in cellular signaling and its effects on heparan sulfate biosynthesis in mesenchymal tumors. Frontiers in oncology 2013, 3:310.
75. Beauvais DM, Burbach BJ, Rapraeger AC: The syndecan-1 ectodomain regulates alphavbeta3 integrin activity in human mammary carcinoma cells. The Journal of cell biology 2004, 167(1):171-181.
76. Purushothaman A, Uyama T, Kobayashi F, Yamada S, Sugahara K, Rapraeger AC, Sanderson RD: Heparanase-enhanced shedding of syndecan-1 by myeloma cells promotes endothelial invasion and angiogenesis. Blood 2010, 115(12):2449-2457.
77. Partovian C, Ju R, Zhuang ZW, Martin KA, Simons M: Syndecan-4 regulates subcellular localization of mTOR Complex2 and Akt activation in a PKCalpha-dependent manner in endothelial cells. Molecular cell 2008, 32(1):140-149.
78. Huveneers S, Truong H, Fassler R, Sonnenberg A, Danen EH: Binding of soluble fibronectin to integrin alpha5 beta1 - link to focal adhesion redistribution and contractile shape. Journal of cell science 2008, 121(Pt 15):2452-2462.
79. Cho S, Beintema JJ, Zhang J: The ribonuclease A superfamily of mammals and birds: identifying new members and tracing evolutionary histories. Genomics 2005, 85(2):208-220.
80. Rosenberg HF: RNase A ribonucleases and host defense: an evolving story. J Leukoc Biol 2008, 83(5):1079-1087.
81. Findlay D, Herries DG, Mathias AP, Rabin BR, Ross CA: The active site and mechanism of action of bovine pancreatic ribonuclease. Nature 1961, 190:781-784.
82. Dyer KD, Rosenberg HF: The RNase a superfamily: generation of diversity and innate host defense. Molecular diversity 2006, 10(4):585-597.
83. Cheng GZ, Li JY, Li F, Wang HY, Shi GX: Human ribonuclease 9, a member of ribonuclease A superfamily, specifically expressed in epididymis, is a novel sperm-binding protein. Asian J Androl 2009, 11(2):240-251.
84. Beintema JJ, Kleineidam RG: The ribonuclease A superfamily: general discussion. Cellular and molecular life sciences : CMLS 1998, 54(8):825-832.
85. Sorrentino S, Glitz DG, Hamann KJ, Loegering DA, Checkel JL, Gleich GJ: Eosinophil-derived neurotoxin and human liver ribonuclease. Identity of structure and linkage of neurotoxicity to nuclease activity. The Journal of biological chemistry 1992, 267(21):14859-14865.
86. Torrent M, de la Torre BG, Nogues VM, Andreu D, Boix E: Bactericidal and membrane disruption activities of the eosinophil cationic protein are largely retained in an N-terminal fragment. The Biochemical journal 2009, 421(3):425-434.
87. Torrent M, Badia M, Moussaoui M, Sanchez D, Nogues MV, Boix E: Comparison of human RNase 3 and RNase 7 bactericidal action at the Gram-negative and Gram-positive bacterial cell wall. The FEBS journal 2010, 277(7):1713-1725.
88. Badet J, Soncin F, N'Guyen T, Barritault D: In vivo and in vitro studies of angiogenin--a potent angiogenic factor. Blood coagulation & fibrinolysis : an international journal in haemostasis and thrombosis 1990, 1(6):721-724.
89. Makarov AA, Ilinskaya ON: Cytotoxic ribonucleases: molecular weapons and their targets. FEBS Lett 2003, 540(1-3):15-20.
90. McLaren DJ, McKean JR, Olsson I, Venges P, Kay AB: Morphological studies on the killing of schistosomula of Schistosoma mansoni by human eosinophil and neutrophil cationic proteins in vitro. Parasite Immunol 1981, 3(4):359-373.
91. Ackerman SJ, Gleich GJ, Loegering DA, Richardson BA, Butterworth AE: Comparative toxicity of purified human eosinophil granule cationic proteins for schistosomula of Schistosoma mansoni. Am J Trop Med Hyg 1985, 34(4):735-745.
92. Maeda T, Kitazoe M, Tada H, de Llorens R, Salomon DS, Ueda M, Yamada H, Seno M: Growth inhibition of mammalian cells by eosinophil cationic protein. Eur J Biochem 2002, 269(1):307-316.
93. Motojima S, Frigas E, Loegering DA, Gleich GJ: Toxicity of eosinophil cationic proteins for guinea pig tracheal epithelium in vitro. Am Rev Respir Dis 1989, 139(3):801-805.
94. Carreras E, Boix E, Navarro S, Rosenberg HF, Cuchillo CM, Nogues MV: Surface-exposed amino acids of eosinophil cationic protein play a critical role in the inhibition of mammalian cell proliferation. Mol Cell Biochem 2005, 272(1-2):1-7.
95. Fan TC, Chang HT, Chen IW, Wang HY, Chang MD: A heparan sulfate-facilitated and raft-dependent macropinocytosis of eosinophil cationic protein. Traffic 2007, 8(12):1778-1795.
96. Hung TJ, Tomiya N, Chang TH, Cheng WC, Kuo PH, Ng SK, Lien PC, Lee YC, Chang MD: Functional characterization of ECP-heparin interaction: a novel molecular model. PloS one 2013, 8(12):e82585.
97. Slifman NR, Loegering DA, McKean DJ, Gleich GJ: Ribonuclease activity associated with human eosinophil-derived neurotoxin and eosinophil cationic protein. J Immunol 1986, 137(9):2913-2917.
98. Sorrentino S: Human extracellular ribonucleases: multiplicity, molecular diversity and catalytic properties of the major RNase types. Cell Mol Life Sci 1998, 54(8):785-794.
99. Sorrentino S, Glitz DG: Ribonuclease activity and substrate preference of human eosinophil cationic protein (ECP). FEBS Lett 1991, 288(1-2):23-26.
100. O'Byrne PM, Naji N, Gauvreau GM: Severe asthma: future treatments. Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology 2012, 42(5):706-711.
101. Szefler SJ, Wenzel S, Brown R, Erzurum SC, Fahy JV, Hamilton RG, Hunt JF, Kita H, Liu AH, Panettieri RA, Jr. et al: Asthma outcomes: biomarkers. The Journal of allergy and clinical immunology 2012, 129(3 Suppl):S9-23.
102. Ullmann N, Bossley CJ, Fleming L, Silvestri M, Bush A, Saglani S: Blood eosinophil counts rarely reflect airway eosinophilia in children with severe asthma. Allergy 2013, 68(3):402-406.
103. Bystrom J, Amin K, Bishop-Bailey D: Analysing the eosinophil cationic protein--a clue to the function of the eosinophil granulocyte. Respiratory research 2011, 12:10.
104. Chang KC, Lo CW, Fan TC, Chang MD, Shu CW, Chang CH, Chung CT, Fang SL, Chao CC, Tsai JJ et al: TNF-alpha mediates eosinophil cationic protein-induced apoptosis in BEAS-2B cells. BMC cell biology 2010, 11:6.
105. Fan TC, Fang SL, Hwang CS, Hsu CY, Lu XA, Hung SC, Lin SC, Chang MD: Characterization of molecular interactions between eosinophil cationic protein and heparin. The Journal of biological chemistry 2008, 283(37):25468-25474.
106. Lien PC, Kuo PH, Chen CJ, Chang HH, Fang SL, Wu WS, Lai YK, Pai TW, Chang MD: In silico prediction and in vitro characterization of multifunctional human RNase3. BioMed research international 2013, 2013:170398.
107. Lingwood D, Harauz G, Ballantyne JS: Regulation of fish gill Na(+)-K(+)-ATPase by selective sulfatide-enriched raft partitioning during seawater adaptation. The Journal of biological chemistry 2005, 280(44):36545-36550.
108. Punde TH, Wu WH, Lien PC, Chang YL, Kuo PH, Chang MD, Lee KY, Huang CD, Kuo HP, Chan YF et al: A biologically inspired lung-on-a-chip device for the study of protein-induced lung inflammation. Integrative biology : quantitative biosciences from nano to macro 2015, 7(2):162-169.
109. Chen HC, Chang HT, Huang PH, Chang MD, Liu RS, Lin YJ, Hsieh CH: Molecular imaging of heparan sulfate expression with radiolabeled recombinant eosinophil cationic protein predicts allergic lung inflammation in a mouse model for asthma. Journal of nuclear medicine : official publication, Society of Nuclear Medicine 2013, 54(5):793-800.
110. Luedtke NW, Carmichael P, Tor Y: Cellular uptake of aminoglycosides, guanidinoglycosides, and poly-arginine. Journal of the American Chemical Society 2003, 125(41):12374-12375.
111. Torrent M, Nogues MV, Boix E: Eosinophil cationic protein (ECP) can bind heparin and other glycosaminoglycans through its RNase active site. Journal of molecular recognition : JMR 2011, 24(1):90-100.
112. Mowafi M, Khadr Z, Bennett G, Hill A, Kawachi I, Subramanian SV: Is access to neighborhood green space associated with BMI among Egyptians? A multilevel study of Cairo neighborhoods. Health & place 2012, 18(2):385-390.
113. Nair JR, Chatterjee K: Methyl iodide poisoning presenting as a mimic of acute stroke: a case report. Journal of medical case reports 2010, 4:177.
114. Pulido D, Moussaoui M, Andreu D, Nogues MV, Torrent M, Boix E: Antimicrobial action and cell agglutination by the eosinophil cationic protein are modulated by the cell wall lipopolysaccharide structure. Antimicrobial agents and chemotherapy 2012, 56(5):2378-2385.
115. Bida JP, Maher LJ, 3rd: Improved prediction of RNA tertiary structure with insights into native state dynamics. Rna 2012, 18(3):385-393.
116. Rosenberg HF, Dyer KD, Tiffany HL, Gonzalez M: Rapid evolution of a unique family of primate ribonuclease genes. Nat Genet 1995, 10(2):219-223.
117. Torrent M, Odorizzi F, Nogues MV, Boix E: Eosinophil cationic protein aggregation: identification of an N-terminus amyloid prone region. Biomacromolecules 2010, 11(8):1983-1990.
118. ReportsnReports.com: Report of Global Peptide Therapeutics Market & Pipeline Insight from ReportsnReports.com in 2014. In.; 2014.
119. Fang SL, Fan TC, Fu HW, Chen CJ, Hwang CS, Hung TJ, Lin LY, Chang MD: A novel cell-penetrating peptide derived from human eosinophil cationic protein. PloS one 2013, 8(3):e57318.
120. Chien-Jung Chen K-CT, Ping-Hsueh Kuo, Pei-Lin Chang, Wen-Ching Wang,Yung-Jen Chuang, and Margaret Dah-Tsyr Chang: A heparan sulfate-binding cell penetrating peptide for tumor and migration inhibition. BioMed research international 2014.
121. Yu SJ, Liao EC, Sheu ML, Margaret Chang DT, Tsai JJ: Correction: Cell-Penetrating Peptide Derived from Human Eosinophil Cationic Protein Inhibits Mite Allergen Der p 2 Induced Inflammasome Activation. PloS one 2015, 10(4):e0127255.
122. Torchilin V: Intracellular delivery of protein and peptide therapeutics. Drug discovery today Technologies 2008, 5(2-3):e95-e103.
123. Madani F, Lindberg S, Langel U, Futaki S, Graslund A: Mechanisms of cellular uptake of cell-penetrating peptides. Journal of biophysics 2011, 2011:414729.
124. Joliot A, Pernelle C, Deagostini-Bazin H, Prochiantz A: Antennapedia homeobox peptide regulates neural morphogenesis. Proceedings of the National Academy of Sciences of the United States of America 1991, 88(5):1864-1868.
125. Gautam A, Singh H, Tyagi A, Chaudhary K, Kumar R, Kapoor P, Raghava GP: CPPsite: a curated database of cell penetrating peptides. Database : the journal of biological databases and curation 2012, 2012:bas015.
126. Chen C-J, Tsai K-C, Kuo P-H, Chang P-L, Wang W-C, Chuang Y-J, Chang MD-T: A Heparan Sulfate-Binding Cell Penetrating Peptide for Tumor Targeting and Migration Inhibition. BioMed research international.
127. Turner JJ, Ivanova GD, Verbeure B, Williams D, Arzumanov AA, Abes S, Lebleu B, Gait MJ: Cell-penetrating peptide conjugates of peptide nucleic acids (PNA) as inhibitors of HIV-1 Tat-dependent trans-activation in cells. Nucleic acids research 2005, 33(21):6837-6849.
128. Ter-Avetisyan G, Tunnemann G, Nowak D, Nitschke M, Herrmann A, Drab M, Cardoso MC: Cell entry of arginine-rich peptides is independent of endocytosis. The Journal of biological chemistry 2009, 284(6):3370-3378.
129. Erazo-Oliveras A, Muthukrishnan N, Baker R, Wang TY, Pellois JP: Improving the endosomal escape of cell-penetrating peptides and their cargos: strategies and challenges. Pharmaceuticals 2012, 5(11):1177-1209.
130. Chen L, Harrison SD: Cell-penetrating peptides in drug development: enabling intracellular targets. Biochem Soc Trans 2007, 35(Pt 4):821-825.
131. Direct Inhibition of delta-Protein Kinase CEtLTISiAMII, Bates E, Bode C, Costa M, Gibson CM, Granger C, Green C, Grimes K, Harrington R, Huber K et al: Intracoronary KAI-9803 as an adjunct to primary percutaneous coronary intervention for acute ST-segment elevation myocardial infarction. Circulation 2008, 117(7):886-896.
132. Meyer-Losic F, Nicolazzi C, Quinonero J, Ribes F, Michel M, Dubois V, de Coupade C, Boukaissi M, Chene AS, Tranchant I et al: DTS-108, a novel peptidic prodrug of SN38: in vivo efficacy and toxicokinetic studies. Clin Cancer Res 2008, 14(7):2145-2153.
133. Kaspar AA, Reichert JM: Future directions for peptide therapeutics development. Drug discovery today 2013, 18(17-18):807-817.
134. Lindgren M, Langel U: Classes and prediction of cell-penetrating peptides. Methods in molecular biology 2011, 683:3-19.
135. Jia L, Gorman GS, Coward LU, Noker PE, McCormick D, Horn TL, Harder JB, Muzzio M, Prabhakar B, Ganesh B et al: Preclinical pharmacokinetics, metabolism, and toxicity of azurin-p28 (NSC745104) a peptide inhibitor of p53 ubiquitination. Cancer chemotherapy and pharmacology 2011, 68(2):513-524.
136. Yamada T, Christov K, Shilkaitis A, Bratescu L, Green A, Santini S, Bizzarri AR, Cannistraro S, Gupta TK, Beattie CW: p28, a first in class peptide inhibitor of cop1 binding to p53. British journal of cancer 2013, 108(12):2495-2504.
137. Moulton HMaM, J.D.: Antisense morpholino oligomers and their peptide conjugates. In Therapeutic Oligonucleotides. In: Cambridge, Royal Society of Chemistry. edn.; 2008: 43-79.
138. Lonza: Peptide market overview report of Lonza in 2012 In.; 2012.
139. e u pa open proteomics 4; 2014.
140. TechNavio: Global Peptide Therapeutics Market 2014-2018 report. In.; 2014.
141. Craik DJ, Fairlie DP, Liras S, Price D: The future of peptide-based drugs. Chemical biology & drug design 2013, 81(1):136-147.
142. Speciality chemicals magazine. In.; 2013.
143. Kaspar A: Future directions for peptide therapeutics development. Drug Discovery Today 2013.
144. Chen CJ, Tsai KC, Kuo PH, Chang PL, Wang WC, Chuang YJ, Chang MD: A Heparan Sulfate-Binding Cell Penetrating Peptide for Tumor Targeting and Migration Inhibition. BioMed research international 2015, 2015:237969.
145. Zlobec I, Steele R, Michel RP, Compton CC, Lugli A, Jass JR: Scoring of p53, VEGF, Bcl-2 and APAF-1 immunohistochemistry and interobserver reliability in colorectal cancer. Mod Pathol 2006, 19(9):1236-1242.
146. van Diest PJ, van Dam P, Henzen-Logmans SC, Berns E, van der Burg ME, Green J, Vergote I: A scoring system for immunohistochemical staining: consensus report of the task force for basic research of the EORTC-GCCG. European Organization for Research and Treatment of Cancer-Gynaecological Cancer Cooperative Group. J Clin Pathol 1997, 50(10):801-804.
147. Koo CL, Kok LF, Lee MY, Wu TS, Cheng YW, Hsu JD, Ruan A, Chao KC, Han CP: Scoring mechanisms of p16INK4a immunohistochemistry based on either independent nucleic stain or mixed cytoplasmic with nucleic expression can significantly signal to distinguish between endocervical and endometrial adenocarcinomas in a tissue microarray study. J Transl Med 2009, 7:25.
148. McDonald JW, Pilgram TK: Nuclear expression of p53, p21 and cyclin D1 is increased in bronchioloalveolar carcinoma. Histopathology 1999, 34(5):439-446.
149. Shiao YH, Palli D, Caporaso NE, Alvord WG, Amorosi A, Nesi G, Saieva C, Masala G, Fraumeni JF, Jr., Rice JM: Genetic and immunohistochemical analyses of p53 independently predict regional metastasis of gastric cancers. Cancer Epidemiol Biomarkers Prev 2000, 9(6):631-633.
150. Capila I, Linhardt RJ: Heparin-protein interactions. Angew Chem Int Ed Engl 2002, 41(3):391-412.
151. Combet C, Blanchet C, Geourjon C, Deleage G: NPS@: network protein sequence analysis. Trends in biochemical sciences 2000, 25(3):147-150.
152. Sussman JL, Abola EE, Lin D, Jiang J, Manning NO, Prilusky J: The protein data bank. Bridging the gap between the sequence and 3D structure world. Genetica 1999, 106(1-2):149-158.
153. Choi YG, Rao AL: Molecular studies on bromovirus capsid protein. VII. Selective packaging on BMV RNA4 by specific N-terminal arginine residuals. Virology 2000, 275(1):207-217.
154. Futaki S, Suzuki T, Ohashi W, Yagami T, Tanaka S, Ueda K, Sugiura Y: Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. The Journal of biological chemistry 2001, 276(8):5836-5840.
155. Langedijk JP: Translocation activity of C-terminal domain of pestivirus Erns and ribotoxin L3 loop. The Journal of biological chemistry 2002, 277(7):5308-5314.
156. Chaloin L, Vidal P, Lory P, Mery J, Lautredou N, Divita G, Heitz F: Design of carrier peptide-oligonucleotide conjugates with rapid membrane translocation and nuclear localization properties. Biochemical and biophysical research communications 1998, 243(2):601-608.
157. Vives E, Brodin P, Lebleu B: A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. The Journal of biological chemistry 1997, 272(25):16010-16017.
158. Wadia JS, Stan RV, Dowdy SF: Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nature medicine 2004, 10(3):310-315.
159. Sugita T, Yoshikawa T, Mukai Y, Yamanada N, Imai S, Nagano K, Yoshida Y, Shibata H, Yoshioka Y, Nakagawa S et al: Comparative study on transduction and toxicity of protein transduction domains. British journal of pharmacology 2008, 153(6):1143-1152.
160. Kameyama S, Horie M, Kikuchi T, Omura T, Tadokoro A, Takeuchi T, Nakase I, Sugiura Y, Futaki S: Acid wash in determining cellular uptake of Fab/cell-permeating peptide conjugates. Biopolymers 2007, 88(2):98-107.
161. Elliott G, O'Hare P: Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell 1997, 88(2):223-233.
162. Byfield FJ, Wen Q, Leszczynska K, Kulakowska A, Namiot Z, Janmey PA, Bucki R: Cathelicidin LL-37 peptide regulates endothelial cell stiffness and endothelial barrier permeability. American journal of physiology Cell physiology 2011, 300(1):C105-112.
163. Pochet S, Tandel S, Querriere S, Tre-Hardy M, Garcia-Marcos M, De Lorenzi M, Vandenbranden M, Marino A, Devleeschouwer M, Dehaye JP: Modulation by LL-37 of the responses of salivary glands to purinergic agonists. Molecular pharmacology 2006, 69(6):2037-2046.
164. Drin G, Cottin S, Blanc E, Rees AR, Temsamani J: Studies on the internalization mechanism of cationic cell-penetrating peptides. The Journal of biological chemistry 2003, 278(33):31192-31201.
165. Magzoub M, Sandgren S, Lundberg P, Oglecka K, Lilja J, Wittrup A, Goran Eriksson LE, Langel U, Belting M, Graslund A: N-terminal peptides from unprocessed prion proteins enter cells by macropinocytosis. Biochemical and biophysical research communications 2006, 348(2):379-385.
166. Nascimento FD, Hayashi MA, Kerkis A, Oliveira V, Oliveira EB, Radis-Baptista G, Nader HB, Yamane T, Tersariol IL, Kerkis I: Crotamine mediates gene delivery into cells through the binding to heparan sulfate proteoglycans. The Journal of biological chemistry 2007, 282(29):21349-21360.
167. Fajloun Z, Kharrat R, Chen L, Lecomte C, Di Luccio E, Bichet D, El Ayeb M, Rochat H, Allen PD, Pessah IN et al: Chemical synthesis and characterization of maurocalcine, a scorpion toxin that activates Ca(2+) release channel/ryanodine receptors. FEBS letters 2000, 469(2-3):179-185.
168. Mosbah A, Kharrat R, Fajloun Z, Renisio JG, Blanc E, Sabatier JM, El Ayeb M, Darbon H: A new fold in the scorpion toxin family, associated with an activity on a ryanodine-sensitive calcium channel. Proteins 2000, 40(3):436-442.
169. Pai TW, Chang MD, Tzou WS, Su BH, Wu PC, Chang HT, Chou WI: REMUS: a tool for identification of unique peptide segments as epitopes. Nucleic acids research 2006, 34(Web Server issue):W198-201.
170. Hammond E, Khurana A, Shridhar V, Dredge K: The Role of Heparanase and Sulfatases in the Modification of Heparan Sulfate Proteoglycans within the Tumor Microenvironment and Opportunities for Novel Cancer Therapeutics. Frontiers in oncology 2014, 4:195.
171. Mani K, Cheng F, Sandgren S, Van Den Born J, Havsmark B, Ding K, Fransson LA: The heparan sulfate-specific epitope 10E4 is NO-sensitive and partly inaccessible in glypican-1. Glycobiology 2004, 14(7):599-607.
172. Molist A, Romaris M, Lindahl U, Villena J, Touab M, Bassols A: Changes in glycosaminoglycan structure and composition of the main heparan sulphate proteoglycan from human colon carcinoma cells (perlecan) during cell differentiation. European journal of biochemistry / FEBS 1998, 254(2):371-377.
173. Nackaerts K, Verbeken E, Deneffe G, Vanderschueren B, Demedts M, David G: Heparan sulfate proteoglycan expression in human lung-cancer cells. International journal of cancer Journal international du cancer 1997, 74(3):335-345.
174. Tannock IF, Rotin D: Acid pH in tumors and its potential for therapeutic exploitation. Cancer research 1989, 49(16):4373-4384.
175. Adams EJ, Green JA, Clark AH, Youngson JH: Comparison of different scoring systems for immunohistochemical staining. J Clin Pathol 1999, 52(1):75-77.
176. Strijkers GJ, Mulder WJ, van Tilborg GA, Nicolay K: MRI contrast agents: current status and future perspectives. Anti-cancer agents in medicinal chemistry 2007, 7(3):291-305.
177. Maemondo M, Inoue A, Kobayashi K, Sugawara S, Oizumi S, Isobe H, Gemma A, Harada M, Yoshizawa H, Kinoshita I et al: Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. The New England journal of medicine 2010, 362(25):2380-2388.
178. Chen X, Conti PS, Moats RA: In vivo near-infrared fluorescence imaging of integrin alphavbeta3 in brain tumor xenografts. Cancer research 2004, 64(21):8009-8014.
179. Jha D, Mishra R, Gottschalk S, Wiesmuller KH, Ugurbil K, Maier ME, Engelmann J: CyLoP-1: a novel cysteine-rich cell-penetrating peptide for cytosolic delivery of cargoes. Bioconjugate chemistry 2011, 22(3):319-328.
180. Sanderson RD: Heparan sulfate proteoglycans in invasion and metastasis. Seminars in cell & developmental biology 2001, 12(2):89-98.
181. Knelson EH, Nee JC, Blobe GC: Heparan sulfate signaling in cancer. Trends in biochemical sciences 2014, 39(6):277-288.
182. Mohan CG, Boix E, Evans HR, Nikolovski Z, Nogues MV, Cuchillo CM, Acharya KR: The crystal structure of eosinophil cationic protein in complex with 2',5'-ADP at 2.0 A resolution reveals the details of the ribonucleolytic active site. Biochemistry 2002, 41(40):12100-12106.
183. Toke O: Antimicrobial peptides: new candidates in the fight against bacterial infections. Biopolymers 2005, 80(6):717-735.
184. Carreras E, Boix E, Rosenberg HF, Cuchillo CM, Nogues MV: Both aromatic and cationic residues contribute to the membrane-lytic and bactericidal activity of eosinophil cationic protein. Biochemistry 2003, 42(22):6636-6644.
185. Navarro S, Aleu J, Jimenez M, Boix E, Cuchillo CM, Nogues MV: The cytotoxicity of eosinophil cationic protein/ribonuclease 3 on eukaryotic cell lines takes place through its aggregation on the cell membrane. Cell Mol Life Sci 2008, 65(2):324-337.
186. Chang KC, Lo CW, Fan TC, Chang MD, Shu CW, Chang CH, Chung CT, Fang SL, Chao CC, Tsai JJ et al: TNF-alpha Mediates Eosinophil Cationic Protein-induced Apoptosis in BEAS-2B Cells. BMC Cell Biol 2010, 11(1):6.
187. Cardin AD, Weintraub HJ: Molecular modeling of protein-glycosaminoglycan interactions. Arteriosclerosis 1989, 9(1):21-32.
188. Garcia-Mayoral MF, Moussaoui M, de la Torre BG, Andreu D, Boix E, Nogues MV, Rico M, Laurents DV, Bruix M: NMR structural determinants of eosinophil cationic protein binding to membrane and heparin mimetics. Biophys J, 98(11):2702-2711.
189. Torrent M, Nogues MV, Boix E: Eosinophil cationic protein (ECP) can bind heparin and other glycosaminoglycans through its RNase active site. J Mol Recognit.
190. Vives E: Cellular uptake [correction of utake] of the Tat peptide: an endocytosis mechanism following ionic interactions. Journal of molecular recognition : JMR 2003, 16(5):265-271.
191. Tyagi M, Rusnati M, Presta M, Giacca M: Internalization of HIV-1 tat requires cell surface heparan sulfate proteoglycans. The Journal of biological chemistry 2001, 276(5):3254-3261.
192. Dom G, Shaw-Jackson C, Matis C, Bouffioux O, Picard JJ, Prochiantz A, Mingeot-Leclercq MP, Brasseur R, Rezsohazy R: Cellular uptake of Antennapedia Penetratin peptides is a two-step process in which phase transfer precedes a tryptophan-dependent translocation. Nucleic acids research 2003, 31(2):556-561.
193. Parish CR, Freeman C, Brown KJ, Francis DJ, Cowden WB: Identification of sulfated oligosaccharide-based inhibitors of tumor growth and metastasis using novel in vitro assays for angiogenesis and heparanase activity. Cancer Res 1999, 59(14):3433-3441.
194. Demir M, Iqbal O, Hoppensteadt DA, Piccolo P, Ahmad S, Schultz CL, Linhardt RJ, Fareed J: Anticoagulant and antiprotease profiles of a novel natural heparinomimetic mannopentaose phosphate sulfate (PI-88). Clin Appl Thromb Hemost 2001, 7(2):131-140.
195. Sarko D, Beijer B, Garcia Boy R, Nothelfer EM, Leotta K, Eisenhut M, Altmann A, Haberkorn U, Mier W: The pharmacokinetics of cell-penetrating peptides. Molecular pharmaceutics 2010, 7(6):2224-2231.
196. Nascimento FD, Sancey L, Pereira A, Rome C, Oliveira V, Oliveira EB, Nader HB, Yamane T, Kerkis I, Tersariol IL et al: The natural cell-penetrating peptide crotamine targets tumor tissue in vivo and triggers a lethal calcium-dependent pathway in cultured cells. Molecular pharmaceutics 2012, 9(2):211-221.
197. Chien-Jung Chen P-HK, Ta-Jen Hung, Shun-lung Fang, Che-Chuan Yang, Shieh-Yueh Yang, Margaret Dah-Tsyr Chang*: In vitro characterization and in vivo application of a dual functional peptide. Complex, Intelligent, and Software Intensive Systems (CISIS), 2013 Seventh International Conference on 2013:576 - 581.
198. Narula J, Chandrashekhar Y: Molecular imaging of coronary inflammation: overcoming hurdles one at a time. JACC Cardiovasc Imaging 2010, 3(4):448-450.
199. Sandgren S, Wittrup A, Cheng F, Jonsson M, Eklund E, Busch S, Belting M: The human antimicrobial peptide LL-37 transfers extracellular DNA plasmid to the nuclear compartment of mammalian cells via lipid rafts and proteoglycan-dependent endocytosis. The Journal of biological chemistry 2004, 279(17):17951-17956.
200. Tokumaru S, Sayama K, Shirakata Y, Komatsuzawa H, Ouhara K, Hanakawa Y, Yahata Y, Dai X, Tohyama M, Nagai H et al: Induction of keratinocyte migration via transactivation of the epidermal growth factor receptor by the antimicrobial peptide LL-37. Journal of immunology 2005, 175(7):4662-4668.
201. Tjabringa GS, Ninaber DK, Drijfhout JW, Rabe KF, Hiemstra PS: Human cathelicidin LL-37 is a chemoattractant for eosinophils and neutrophils that acts via formyl-peptide receptors. Int Arch Allergy Immunol 2006, 140(2):103-112.
202. Weber G, Chamorro CI, Granath F, Liljegren A, Zreika S, Saidak Z, Sandstedt B, Rotstein S, Mentaverri R, Sanchez F et al: Human antimicrobial protein hCAP18/LL-37 promotes a metastatic phenotype in breast cancer. Breast cancer research : BCR 2009, 11(1):R6.
203. Caesar CE, Esbjorner EK, Lincoln P, Norden B: Membrane interactions of cell-penetrating peptides probed by tryptophan fluorescence and dichroism techniques: correlations of structure to cellular uptake. Biochemistry 2006, 45(24):7682-7692.
204. Wender PA, Mitchell DJ, Pattabiraman K, Pelkey ET, Steinman L, Rothbard JB: The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters. Proc Natl Acad Sci U S A 2000, 97(24):13003-13008.
205. Maiolo JR, Ferrer M, Ottinger EA: Effects of cargo molecules on the cellular uptake of arginine-rich cell-penetrating peptides. Biochimica et biophysica acta 2005, 1712(2):161-172.
206. Rydberg HA, Matson M, Amand HL, Esbjorner EK, Norden B: Effects of Tryptophan Content and Backbone Spacing on the Uptake Efficiency of Cell-Penetrating Peptides. Biochemistry 2012.
207. Kamide K, Nakakubo H, Uno S, Fukamizu A: Isolation of novel cell-penetrating peptides from a random peptide library using in vitro virus and their modifications. Int J Mol Med 2010, 25(1):41-51.
208. Youngster S, Wang YS, Grace M, Bausch J, Bordens R, Wyss DF: Structure, biology, and therapeutic implications of pegylated interferon alpha-2b. Current pharmaceutical design 2002, 8(24):2139-2157.
209. Ziegler A: Thermodynamic studies and binding mechanisms of cell-penetrating peptides with lipids and glycosaminoglycans. Advanced drug delivery reviews 2008, 60(4-5):580-597.
210. Futaki S: Oligoarginine vectors for intracellular delivery: design and cellular-uptake mechanisms. Biopolymers 2006, 84(3):241-249.
211. Koren E, Torchilin VP: Cell-penetrating peptides: breaking through to the other side. Trends in molecular medicine 2012, 18(7):385-393.
212. Nakase I, Tadokoro A, Kawabata N, Takeuchi T, Katoh H, Hiramoto K, Negishi M, Nomizu M, Sugiura Y, Futaki S: Interaction of arginine-rich peptides with membrane-associated proteoglycans is crucial for induction of actin organization and macropinocytosis. Biochemistry 2007, 46(2):492-501.
213. Mishra A, Lai GH, Schmidt NW, Sun VZ, Rodriguez AR, Tong R, Tang L, Cheng J, Deming TJ, Kamei DT et al: Translocation of HIV TAT peptide and analogues induced by multiplexed membrane and cytoskeletal interactions. Proceedings of the National Academy of Sciences of the United States of America 2011, 108(41):16883-16888.
214. Kaplan IM, Wadia JS, Dowdy SF: Cationic TAT peptide transduction domain enters cells by macropinocytosis. Journal of controlled release : official journal of the Controlled Release Society 2005, 102(1):247-253.
215. Letoha T, Keller-Pinter A, Kusz E, Kolozsi C, Bozso Z, Toth G, Vizler C, Olah Z, Szilak L: Cell-penetrating peptide exploited syndecans. Biochim Biophys Acta 2010, 1798(12):2258-2265.
216. Gorlich D, Mattaj IW: Nucleocytoplasmic transport. Science 1996, 271(5255):1513-1518.
217. Kalderon D, Roberts BL, Richardson WD, Smith AE: A short amino acid sequence able to specify nuclear location. Cell 1984, 39(3 Pt 2):499-509.
218. Jans DA, Jans P: Negative charge at the casein kinase II site flanking the nuclear localization signal of the SV40 large T-antigen is mechanistically important for enhanced nuclear import. Oncogene 1994, 9(10):2961-2968.
219. Derossi D, Joliot AH, Chassaing G, Prochiantz A: The third helix of the Antennapedia homeodomain translocates through biological membranes. The Journal of biological chemistry 1994, 269(14):10444-10450.
220. Schmidt MC, Rothen-Rutishauser B, Rist B, Beck-Sickinger A, Wunderli-Allenspach H, Rubas W, Sadee W, Merkle HP: Translocation of human calcitonin in respiratory nasal epithelium is associated with self-assembly in lipid membrane. Biochemistry 1998, 37(47):16582-16590.
221. Sakamoto N, Rosenberg AS: Apolipoprotein B binding domains: evidence that they are cell-penetrating peptides that efficiently deliver antigenic Peptide for cross-presentation of cytotoxic T cells. Journal of immunology, 186(8):5004-5011.
222. Lang S, Rothen-Rutishauser B, Perriard JC, Schmidt MC, Merkle HP: Permeation and pathways of human calcitonin (hCT) across excised bovine nasal mucosa. Peptides 1998, 19(3):599-607.
223. Elmquist A, Lindgren M, Bartfai T, Langel U: VE-cadherin-derived cell-penetrating peptide, pVEC, with carrier functions. Exp Cell Res 2001, 269(2):237-244.
224. Eiriksdottir E, Mager I, Lehto T, El Andaloussi S, Langel U: Cellular internalization kinetics of (luciferin-)cell-penetrating peptide conjugates. Bioconjugate chemistry 2010, 21(9):1662-1672.
225. Mager I, Eiriksdottir E, Langel K, El Andaloussi S, Langel U: Assessing the uptake kinetics and internalization mechanisms of cell-penetrating peptides using a quenched fluorescence assay. Biochim Biophys Acta 2010, 1798(3):338-343.
226. Marinova Z, Vukojevic V, Surcheva S, Yakovleva T, Cebers G, Pasikova N, Usynin I, Hugonin L, Fang W, Hallberg M et al: Translocation of dynorphin neuropeptides across the plasma membrane. A putative mechanism of signal transmission. The Journal of biological chemistry 2005, 280(28):26360-26370.
227. Duchardt F, Ruttekolk IR, Verdurmen WP, Lortat-Jacob H, Burck J, Hufnagel H, Fischer R, van den Heuvel M, Lowik DW, Vuister GW et al: A cell-penetrating peptide derived from human lactoferrin with conformation-dependent uptake efficiency. The Journal of biological chemistry 2009, 284(52):36099-36108.
228. Noguchi H, Matsumoto S, Okitsu T, Iwanaga Y, Yonekawa Y, Nagata H, Matsushita M, Wei FY, Matsui H, Minami K et al: PDX-1 protein is internalized by lipid raft-dependent macropinocytosis. Cell Transplant 2005, 14(9):637-645.
229. El-Andaloussi S, Johansson HJ, Holm T, Langel U: A novel cell-penetrating peptide, M918, for efficient delivery of proteins and peptide nucleic acids. Molecular therapy : the journal of the American Society of Gene Therapy 2007, 15(10):1820-1826.
230. Byfield FJ, Wen Q, Leszczynska K, Kulakowska A, Namiot Z, Janmey PA, Bucki R: Cathelicidin LL-37 peptide regulates endothelial cell stiffness and endothelial barrier permeability. American journal of physiology Cell physiology, 300(1):C105-112.
231. Johnson RJ, McCoy JG, Bingman CA, Phillips GN, Jr., Raines RT: Inhibition of human pancreatic ribonuclease by the human ribonuclease inhibitor protein. J Mol Biol 2007, 368(2):434-449.
232. Gleich GJ, Loegering DA, Bell MP, Checkel JL, Ackerman SJ, McKean DJ: Biochemical and functional similarities between human eosinophil-derived neurotoxin and eosinophil cationic protein: homology with ribonuclease. Proc Natl Acad Sci U S A 1986, 83(10):3146-3150.
233. Gabay JE, Scott RW, Campanelli D, Griffith J, Wilde C, Marra MN, Seeger M, Nathan CF: Antibiotic proteins of human polymorphonuclear leukocytes. Proc Natl Acad Sci U S A 1989, 86(14):5610-5614.
234. Yang D, Chen Q, Rosenberg HF, Rybak SM, Newton DL, Wang ZY, Fu Q, Tchernev VT, Wang M, Schweitzer B et al: Human ribonuclease A superfamily members, eosinophil-derived neurotoxin and pancreatic ribonuclease, induce dendritic cell maturation and activation. J Immunol 2004, 173(10):6134-6142.
235. Seno M, Futami J, Tsushima Y, Akutagawa K, Kosaka M, Tada H, Yamada H: Molecular cloning and expression of human ribonuclease 4 cDNA. Biochim Biophys Acta 1995, 1261(3):424-426.
236. Di Liddo R, Dalzoppo D, Baiguera S, Conconi MT, Dettin M, Parnigotto PP, Grandi C: In vitro biological activity of bovine milk ribonuclease-4. Mol Med Report 2010, 3(1):127-132.
237. Saxena SK, Rybak SM, Davey RT, Jr., Youle RJ, Ackerman EJ: Angiogenin is a cytotoxic, tRNA-specific ribonuclease in the RNase A superfamily. J Biol Chem 1992, 267(30):21982-21986.
238. Tsirakis G, Pappa CA, Kanellou P, Stratinaki MA, Xekalou A, Psarakis FE, Sakellaris G, Alegakis A, Stathopoulos EN, Alexandrakis MG: Role of platelet-derived growth factor-AB in tumour growth and angiogenesis in relation with other angiogenic cytokines in multiple myeloma. Hematol Oncol 2011.
239. Wiedlocha A: Following angiogenin during angiogenesis: a journey from the cell surface to the nucleolus. Arch Immunol Ther Exp (Warsz) 1999, 47(5):299-305.
240. Rosenberg HF, Dyer KD: Molecular cloning and characterization of a novel human ribonuclease (RNase k6): increasing diversity in the enlarging ribonuclease gene family. Nucleic Acids Res 1996, 24(18):3507-3513.
241. Torrent M, Sanchez D, Buzon V, Nogues MV, Cladera J, Boix E: Comparison of the membrane interaction mechanism of two antimicrobial RNases: RNase 3/ECP and RNase 7. Biochim Biophys Acta 2009, 1788(5):1116-1125.
242. Huang YC, Lin YM, Chang TW, Wu SJ, Lee YS, Chang MD, Chen C, Wu SH, Liao YD: The flexible and clustered lysine residues of human ribonuclease 7 are critical for membrane permeability and antimicrobial activity. J Biol Chem 2007, 282(7):4626-4633.
243. Zhang J, Dyer KD, Rosenberg HF: RNase 8, a novel RNase A superfamily ribonuclease expressed uniquely in placenta. Nucleic Acids Res 2002, 30(5):1169-1175.
244. Liu J, Li J, Wang H, Zhang C, Li N, Lin Y, Wang W: Cloning, expression and location of RNase9 in human epididymis. BMC Res Notes 2008, 1:111.
245. Berges R, Balzeau J, Peterson AC, Eyer J: A tubulin binding peptide targets glioma cells disrupting their microtubules, blocking migration, and inducing apoptosis. Molecular therapy : the journal of the American Society of Gene Therapy 2012, 20(7):1367-1377.
246. Lepinoux-Chambaud C, Eyer J: The NFL-TBS.40-63 anti-glioblastoma peptide enters selectively in glioma cells by endocytosis. International journal of pharmaceutics 2013, 454(2):738-747.
247. Jia H, Lohr M, Jezequel S, Davis D, Shaikh S, Selwood D, Zachary I: Cysteine-rich and basic domain HIV-1 Tat peptides inhibit angiogenesis and induce endothelial cell apoptosis. Biochemical and biophysical research communications 2001, 283(2):469-479.
248. Mehta RR, Yamada T, Taylor BN, Christov K, King ML, Majumdar D, Lekmine F, Tiruppathi C, Shilkaitis A, Bratescu L et al: A cell penetrating peptide derived from azurin inhibits angiogenesis and tumor growth by inhibiting phosphorylation of VEGFR-2, FAK and Akt. Angiogenesis 2011, 14(3):355-369.
249. Kuroda K, Okumura K, Isogai H, Isogai E: The Human Cathelicidin Antimicrobial Peptide LL-37 and Mimics are Potential Anticancer Drugs. Frontiers in oncology 2015, 5:144.