研究生: |
謝心慈 Hsieh, Hsin-Tzu |
---|---|
論文名稱: |
開發遞送一氧化氮及PD-L1 siRNA之CXCR4靶向奈米粒子於神經膠質瘤之免疫治療 Development of CXCR4-Targeted Nitric Oxide Nanoparticles with PD-L1 siRNA for Immunotherapy against Glioblastoma |
指導教授: |
陳韻晶
Chen, Yunching |
口試委員: |
黃玠誠
林美薇 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 生物醫學工程研究所 Institute of Biomedical Engineering |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 47 |
中文關鍵詞: | 免疫療法 、基因療法 、一氧化氮 、小分子干擾核糖核酸 、細胞程式死亡配體-1 |
相關次數: | 點閱:43 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
多形性膠質母細胞瘤(Glioblastoma multiforme, GBM) 被視為中央神經系統中最具侵略性的惡性癌症,五年存活率僅不到5%。目前臨床測試證實以免疫療法治療多形性膠質母細胞瘤確實能提升存活率,然而僅能達到有限的治療效果,可歸因於腦微血管中的緊密組織—血腦屏障(blood brain barrier, BBB),血腦屏障會限制藥物的遞送效果並降低其穿透腫瘤的能力。一氧化氮(nitric oxide, NO)不僅在血管擴張中扮演了重要的角色,也能夠阻斷血腦屏障,進而促進血腦屏障的通透性。許多研究指出同時遞送抗癌藥物以及一氧化氮載體能誘導瓦解血腦屏障並增加藥物累積於腫瘤中,進而提升治療的效率,因此我們開發一種靶向脂質磷酸鈣(lipid-calcium-phosphate, LCP)奈米粒子,並在奈米粒子中搭載一氧化氮載體以及細胞程式死亡配體-1 (programmed cell death-ligand 1, PD-L1)小分子干擾核糖核酸(small interfering RNA, siRNA),並於奈米載體表面修飾能辨識CXCR4的胜肽以提高標靶效率,透過一氧化氮來調控血腦屏障以及腫瘤內的血管,並透過此奈米載體遞送免疫檢查點抑制劑PD-L1 siRNA至腫瘤,抑制PD-L1的表現,進而活化胞毒性T細胞並增加胞毒性T細胞浸潤於腫瘤,藉此達到抑制腫瘤的增長。本研究所開發之新型能協同遞送一氧化氮及PD-L1 siRNA之CXCR4靶向脂質磷酸鈣奈米粒子,將有望做為多形性膠質母細胞瘤的高潛力臨床免疫療法策略。
Glioblastoma multiforme (GBM) is one of the most aggressive malignant cancers of the central nervous system. The five-year survival rate was less than 5%. Immunotherapy is considered as the promising strategy to treat GBM; however, only the limited therapeutic effect can be achieved. The limited effect can be attributed to the presence of blood-brain barrier (BBB). Blood-brain barrier is the tight junction structure of the brain, which can protect the brain from unnecessary or toxic compounds. Unfortunately, BBB hinders the penetration of most of drugs. Nitric oxide (NO) not only plays an important role in vasodilation but modulates the BBB. NO can help open the BBB and improve the penetration of cargoes into GBM tumors. Therefore, we developed a CXCR4-targeted lipid-calcium-phosphate nanoparticle with NO donors (LCP-NO NPs) as an immunotherapeutic strategy. We also conjugated with CXCR4-targeted antagonist, CTCE-9908 peptide, to enhance targeting ability of nanoparticles. The delivery of NO resulted in increasing BBB permeability and enhanced gene delivery through BBB. CXCR4-targeted LCP-NO NPs could efficiently deliver gene into cancer cells. Moreover, we also encapsulated the immune checkpoint inhibitor, PD-L1 siRNA, which could silence PD-L1 expression, stimulate the immune system, activate the cytotoxic T cells, promote the infiltration of T cells into GBM cells, and suppress GBM progression. We proved that CXCR4-targeted LCP-NO NPs had significant ability for delivering siRNA into tumor cells in vivo and suppressing the tumor growth. Also, our treatment strategy could activate the immune system, promote T cells infiltration, and reduce the tumor growth. Thus, CXCR4-targeted NPs may serve as a potential immunotherapy for GBM by codelivery of NO and PD-L1 siRNA.
1 Ostrom, Q. T., Cioffi, G., Waite, K., Kruchko, C. & Barnholtz-Sloan, J. S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2014-2018. Neuro Oncol 23, iii1-iii105 (2021).
2 Zhang, P., Xia, Q., Liu, L., Li, S. & Dong, L. Current opinion on molecular characterization for GBM classification in guiding clinical diagnosis, prognosis, and therapy. Frontiers in molecular biosciences 7, 562798 (2020).
3 Hanif, F., Muzaffar, K., Perveen, K., Malhi, S. M. & Simjee, S. U. Glioblastoma multiforme: a review of its epidemiology and pathogenesis through clinical presentation and treatment. Asian Pacific journal of cancer prevention: APJCP 18, 3 (2017).
4 Davis, M. E. Glioblastoma: overview of disease and treatment. Clinical journal of oncology nursing 20, S2 (2016).
5 Ballabh, P., Braun, A. & Nedergaard, M. The blood–brain barrier: an overview: structure, regulation, and clinical implications. Neurobiology of disease 16, 1-13 (2004).
6 Lundy, D. J. et al. Inducing a transient increase in blood–brain barrier permeability for improved liposomal drug therapy of glioblastoma multiforme. ACS nano 13, 97-113 (2018).
7 Mainprize, T. et al. Blood-brain barrier opening in primary brain tumors with non-invasive MR-guided focused ultrasound: a clinical safety and feasibility study. Sci Rep 9, 1-7 (2019).
8 Kwiecien, S. et al. Lipid peroxidation, reactive oxygen species and antioxidative factors in the pathogenesis of gastric mucosal lesions and mechanism of protection against oxidative stress-induced gastric injury. J Physiol Pharmacol 65, 613-622 (2014).
9 Mehrabadi, A. R., Korolainen, M. A., Odero, G., Miller, D. W. & Kauppinen, T. M. Poly (ADP-ribose) polymerase-1 regulates microglia mediated decrease of endothelial tight junction integrity. Neurochemistry International 108, 266-271 (2017).
10 Abbott, N. J., Patabendige, A. A., Dolman, D. E., Yusof, S. R. & Begley, D. J. Structure and function of the blood–brain barrier. Neurobiology of disease 37, 13-25 (2010).
11 Xu, W., Liu, L. Z., Loizidou, M., Ahmed, M. & Charles, I. G. The role of nitric oxide in cancer. Cell research 12, 311-320 (2002).
12 Olivera, G. C. et al. Nitric oxide protects against infection-induced neuroinflammation by preserving the stability of the blood-brain barrier. PLoS pathogens 12, e1005442 (2016).
13 Vanin, A. F. Dinitrosyl iron complexes with thiolate ligands: physico-chemistry, biochemistry and physiology. Nitric oxide 21, 1-13 (2009).
14 Ribatti, D. The concept of immune surveillance against tumors: The first theories. Oncotarget 8, 7175 (2017).
15 Tang, S., Ning, Q., Yang, L., Mo, Z. & Tang, S. Mechanisms of immune escape in the cancer immune cycle. International Immunopharmacology 86, 106700 (2020).
16 Igney, F. H. & Krammer, P. H. Immune escape of tumors: apoptosis resistance and tumor counterattack. Journal of leukocyte biology 71, 907-920 (2002).
17 Bhatia, A. & Kumar, Y. Cellular and molecular mechanisms in cancer immune escape: a comprehensive review. Expert review of clinical immunology 10, 41-62 (2014).
18 Walker, L. S. & Sansom, D. M. The emerging role of CTLA4 as a cell-extrinsic regulator of T cell responses. Nature Reviews Immunology 11, 852-863 (2011).
19 Beatty, G. L. & Gladney, W. L. Immune Escape Mechanisms as a Guide for Cancer ImmunotherapyTailoring Cancer Immunotherapy. Clinical cancer research 21, 687-692 (2015).
20 Daassi, D., Mahoney, K. M. & Freeman, G. J. The importance of exosomal PDL1 in tumour immune evasion. Nature Reviews Immunology 20, 209-215 (2020).
21 O'Donnell, J. S., Long, G. V., Scolyer, R. A., Teng, M. W. & Smyth, M. J. Resistance to PD1/PDL1 checkpoint inhibition. Cancer treatment reviews 52, 71-81 (2017).
22 Berraondo, P. et al. Cytokines in clinical cancer immunotherapy. British journal of cancer 120, 6-15 (2019).
23 Emens, L. A. Breast Cancer Immunotherapy: Facts and HopesBreast Cancer Immunotherapy. Clinical cancer research 24, 511-520 (2018).
24 Kruger, S. et al. Advances in cancer immunotherapy 2019–latest trends. Journal of Experimental & Clinical Cancer Research 38, 1-11 (2019).
25 Sharma, P., Hu-Lieskovan, S., Wargo, J. A. & Ribas, A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168, 707-723 (2017).
26 Couzin-Frankel, J. (American Association for the Advancement of Science, 2013).
27 Reardon, D. A. et al. (American Society of Clinical Oncology, 2019).
28 Hoos, A. Development of immuno-oncology drugs—from CTLA4 to PD1 to the next generations. Nature reviews Drug discovery 15, 235-247 (2016).
29 Rotte, A. Combination of CTLA-4 and PD-1 blockers for treatment of cancer. Journal of Experimental & Clinical Cancer Research 38, 1-12 (2019).
30 Zhang, J., Dang, F., Ren, J. & Wei, W. Biochemical aspects of PD-L1 regulation in cancer immunotherapy. Trends in biochemical sciences 43, 1014-1032 (2018).
31 Setten, R. L., Rossi, J. J. & Han, S.-p. The current state and future directions of RNAi-based therapeutics. Nature Reviews Drug Discovery 18, 421-446 (2019).
32 Xue, H. Y., Liu, S. & Wong, H. L. Nanotoxicity: a key obstacle to clinical translation of siRNA-based nanomedicine. Nanomedicine 9, 295-312 (2014).
33 Paroo, Z. & Corey, D. R. Challenges for RNAi in vivo. TRENDS in Biotechnology 22, 390-394 (2004).
34 Robbins, P. D. & Ghivizzani, S. C. Viral vectors for gene therapy. Pharmacology & therapeutics 80, 35-47 (1998).
35 Thomas, C. E., Ehrhardt, A. & Kay, M. A. Progress and problems with the use of viral vectors for gene therapy. Nature Reviews Genetics 4, 346-358 (2003).
36 Hung, M.-C., Huang, L. & Wagner, E. Nonviral vectors for gene therapy. (1999).
37 Ramamoorth, M. & Narvekar, A. Non viral vectors in gene therapy-an overview. Journal of clinical and diagnostic research: JCDR 9, GE01 (2015).
38 Huang, K.-W. et al. Highly efficient and tumor-selective nanoparticles for dual-targeted immunogene therapy against cancer. Science advances 6, eaax5032 (2020).
39 Scherer, F. et al. Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene therapy 9, 102-109 (2002).
40 Pardi, N., Hogan, M. J., Porter, F. W. & Weissman, D. mRNA vaccines—a new era in vaccinology. Nature reviews Drug discovery 17, 261-279 (2018).