簡易檢索 / 詳目顯示

研究生: 洪志成
Hung, Chih-Cheng
論文名稱: 電化學石英晶體微天平在質子交換膜燃料電池碳載體腐蝕分析及性能提升之研究
Studies on carbon support corrosion and performance improvement for the proton exchange membrane fuel cells by electrochemical quartz crystal microbalance
指導教授: 施漢章
Shih, Han-C.
吳志明
Wu, Jyh-Ming
口試委員: 曹春暉
Tsau, Chun-Huei
黃清安
Huang, Ching-An
王丞浩
Wang, Chen-Hao
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 109
中文關鍵詞: 電化學石英晶體微天平質子交換膜燃料電池碳載體碳腐蝕火花電漿燒結
外文關鍵詞: EQCM, PEMFC, carbon support, carbon corrosion, SPS
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用電化學石英天秤(EQCM)結合循環伏安法(CV),質子交換膜燃料電池(PEMFC)中的碳載體材料電化學腐蝕劣化行為可成功地被觀察及研究。幾種常用的商業碳載體材料(Vulcan XC-72,Ketjen black ECP300,Ketjen black ECP600)以及多壁奈米碳管(MWCNT)以噴塗法製備成碳膜石英電極(C-QCE),在298K的脫氣0.5M H2SO4溶液中,於循環伏安法(CV)的同時通過EQCM的頻率變動,可以觀察到的碳膜石英電極(C-QCE)上的質量變化。在CV正向掃描期間,表面氧化物形成並累積在碳表面上,導致碳膜石英電極的重量隨著電位上升而增加;而在較高電位區域可觀察到由於表面碳氧化物氣化成二氧化碳,所造成與碳腐蝕相關的重量減少。由實驗結果顯示,未處理商用載碳體XC-72的EQCM重量減少的發生電位為1.05V與其它碳載體腐蝕研究的結果相近;再依單位面積碳腐蝕率比較,高比表面積的商用碳載體ECP300、ECP600高於較低比表面積的XC-72,顯示較高比表面積的商用碳載體會有較大的碳腐蝕程度;另外多壁奈米碳管的EQCM重量減少的電位提高至1.62V,驗證了碳載體材料的石墨化度,可有效增強其於燃料電池環境下的抗電化學氧化性。
    研究碳膜石英電極於CV期間的EQCM重量變化率以及重量減少的發生電位,可進一步討論碳載體材料的電化學碳腐蝕行為,商用碳載體材料XC-72於模擬燃料電池環境下0.5M H2SO4溶液的電化學氧化行為及其影響條件;由實驗結果證明:通入不同氣體的0.5M H2SO4溶液條件實驗,證明碳載體氧化的氧來源主要來自液體;而加入PTFE黏劑的碳膜則因表面疏水及質傳阻礙,電化學氧化程度減少。
    以傳統的高溫加熱的方法可以提升質子燃料電池碳載體的石墨化程度,從而提高碳載體電化學氧化過程中的穩定性及抗腐蝕性,由實驗結果商用碳載體材料Vulcan XC-72經2200℃以上的高溫處理後,可有效的提升碳載體的石墨化度,但分析結果也顯示:碳載體本身的比表面積大幅減少,且碳載體表面的含氧官能基減少而使其表面會過於疏水,這樣的疏水表面會使得碳載體在後續的白金觸媒顆粒上漿製程中,產生不易附載及分散不均等問題;利用氧電漿處理石墨化的碳黑,可增加石墨化碳黑表面的含氧官能基,解決石墨化碳黑不易附載白金觸媒的問題,相關文獻也指出含氧官能基能使白金觸媒顆粒和碳載體間的反應及附著性更好。
    以火花電漿燒結(SPS)方法增強商用碳載體材料Vulcan XC-72 的石墨化度,不僅處理時間短,對碳黑的比表面積、孔隙度及表面官能基的影響小,本研究並討論在不同的SPS實驗條件下,所得到碳材的石墨化結果;由EQCM的實驗結果顯示,經SPS法處理後和未處理的商用碳載體材料Vulcan XC-72相比,由於石墨化的提升從而使得其電化學的抗腐蝕能力增加;另外和傳統高溫加熱法比較,以SPS法處理後的碳載體XC-72表面仍可保有較好的比表面積、表面官能基及親水性,在白金觸媒的附載上也較為容易。


    The carbon corrosion behavior of several carbon support materials for proton exchange membrane fuel cell (PEMFC), including commercial carbon black (Vulcan XC-72, Ketjen black ECP300, Ketjen black ECP600), graphitized carbon black and multi-wall carbon nanotubes (MWCNTs), was investigated by using the electrochemical quartz crystal microbalance (EQCM) method. The mass change during cyclic voltammetry (CV) in deaerated 0.5 M H2SO4 solution at 298 K can be observed by the frequency change of EQCM. During the positive scan, the carbon surface oxides were formed and accumulated on the carbon surface leading to an increase of the mass as the potential increasing. In the higher potential region, a drop in mass associated to carbon loss was observed which was attributed to the gasification of surface carbon oxides to carbon dioxide. Examine the mass change rate and mass drop onset potential, the behavior of electrochemical carbon corrosion was discussed.
    The influence of specific surface area and graphitization of carbon supports were also investigated in this study. The results indicate that high BET surface area carbon blacks rendered less resistant to electrochemical carbon corrosion. Graphitized XC-72 and MWCNTs with higher graphitization degrees appear more intrinsically resistant to electrochemical carbon corrosion.
    The commercial carbon support Vulcan XC-72 was graphitized by conventional high temperature heat treatment at various temperatures to increase the graphitization and improve the electrochemical corrosion stability of commercial carbon support Vulcan XC-72. The result shows XC-72 can be obviously increase the graphitization after 2200℃ conventional high temperature heat treatment. Meanwhile, the BET surface area and the surface functional groups of carbon support XC-72 was strongly decreased after heat treatment. After oxygen plasms treatment, the graphitized XC-72 carbon black has increased the BET surface area and the O/C ratio of surface similar to the as-received XC-72. Therefore, oxygen plasma treatment is an effective method to provide graphitized carbon blacks with surface functional groups that can act as anchoring sites to favor dispersion and deposition of platinum particles on their surface and could be helpful to prevent platinum particles agglomeration.
    Comparing to conventional high temperature heat treatment, carbon support XC-72 can be graphitized rapidly by SPS method only within few minutes. Moreover, the SPS treated carbon support XC-72 do not suffer from high levels of hydrophobic character which can create problems with active phase dispersion and ink formulations. The results revealed that the SPS is an effective method to enhance the electrochemical stability and surface properties of carbon blacks for the application of PEMFC.

    中文摘要 i ABSTRACT iii 誌謝 v CONTENTS Chapter 1 Introduction 1 1.1 Fuel cell 1 1.1.1 The development of fuel cells 2 1.1.2 Types of Fuel Cells 4 1.2 The PEMFC 8 1.2.1 The challenges of PEMFCs 9 1.2.2 The structure of PEMFC 11 1.3 Carbon support 14 1.3.1 Carbons in PEMFC 14 1.3.2 New carbon support materials 18 1.3.3 The characteristics of carbon 19 1.3.4 Graphitization of carbon 21 1.3.5 The corrosion of carbon support for PEMFC 22 1.4 Spark plasma sintering (SPS) 26 Chapter 2 Corrosion of commercial carbon support for PEM fuel cells by EQCM...29 2.1 Introduction 29 2.2 Experimental 31 2.2.1 Carbon film quartz crystal electrodes (C-QCE) preparation 31 2.2.2 Electrochemical experiment 31 2.2.3 Physical characterization 33 2.3 Result and Discussion 34 2.3.1 EQCM measurement of XC-72 34 2.3.2 Investigation of commercial carbon blacks 43 2.3.3 Investigation of MWCNT 46 2.3.4 The influence of binder 48 2.3.5 The influence of atmosphere 51 2.4 Conclusions 53 Chapter 3 The graphitization of commercial carbon support and surface functionalization by oxygen plasma treatment for PEMFC 54 3.1 Introduction 54 3.2 Experimental 56 3.2.1 Graphitized carbon blacks preparation 56 3.2.2 Oxygen plasma treatment 56 3.2.3 Electrochemical experiment 56 3.2.4 Physical characterization 57 3.3 Result and Discussion 58 3.3.1 Investigation of graphitization for XC-72 carbon black 58 3.3.2 The investiagtion of BET surface area and pore volume 61 3.3.3 The surface chemistry and wettability of carbon blacks 63 3.3.4 Electrochemical oxidation for carbon blacks 65 3.3.5 The oxygen plasma treatment of graphitized XC-72 68 3.4 Conclusion 75 Chapter 4 A rapid method to improve the performance of carbon support for PEM fuel cell by SPS 76 4.1 Introduction 76 4.2 Experimental 78 4.2.1 The preparation of carbon blacks 78 4.2.2 Electrochemical experiment 79 4.2.3 Physical characterization 80 4.2.4 Preparation of carbon-supported Pt catalysts 80 4.3 Result and Discussion 81 4.3.1 The heating temperature of SPS treatment 81 4.3.2 Investigation for three carbons 83 4.3.3 TEM measurement of carbons 85 4.3.4 The BET specific surface area 87 4.3.5 The surface chemistry and wettability of carbon blacks 89 4.3.6 The electrochemical corrosion resistant 91 4.3.7 Electrical conductivity 93 4.3.8 Thermal stability 94 4.3.9 Deposition of Pt catalytic particles on carbon blacks 95 4.4 Conclusion 99 Chapter 5 Summary 100 LIST OF FIGURES Fig. 1.1 Schematic of an individual fuel cell. 2 Fig. 1.2 Sir William Grove and the scheme of his gas voltaic battery 3 Fig. 1.3 (A) the maximum operating temperature of fuel cells vs. output power (B) the electric efficiencies and combined heat and power (CHP) efficiencies of various fuel cells 6 Fig. 1.4 Fuel Cell Today data from 2009-2013 for a) shipments by application b) shipments by fuel cell type 7 Fig. 1.5 Modeled cost of an 80-kWnet PEMFC system based on projection to high-volume manufacturing (500,000 units/year) 9 Fig. 1.6 Waterfall chart for projection of automotive fuel cell system cost down to DOE 2020 target $40/kWnet, and DOE ultimate target $30/kWnet 10 Fig. 1.7 The basic structure of proton exchange membrane fuel cell (PEMFC) 11 Fig. 1.8 Chemical structure of Nafion monomer 13 Fig. 1.9 The physicochemical properties of carbon black 17 Fig. 1.10 The structure of graphite 20 Fig. 1.11 Structural model for the process of graphitization 21 Fig. 1.12 A schematic illustration of reactions in four distinct regions when an air/fuel boundary is formed at the anode. Cathode catalyst layer thickness was reduced to about 1/3 of its original value after 80 cycles, while the anode thickness did not show much change 23 Fig. 1.13 Schematic representation of degradation of carbon catalyst support during operation in the absence of fuel 24 Fig. 1.14 Comparison of CO2 mass-spectra profiles for MEAs with non-graphitized support N-Pt/C and graphitized support G-Pt/C at 1.4 V 25 Fig. 1.15 The schematic of the SPS system 26 Fig. 1.16 Energy dissipation in the microscopic scale during the SPS process 27 Fig. 1.17 The mechanism of speak plasma sintering 28 Fig. 2.1 Schematic of the EQCM system and carbon film quartz crystal electrodes 33 Fig. 2.2 The EQCM mass change responses for the bare Au quartz crystal electrode (Au-QCE) recorded simultaneously with the CV in deaerated 0.5 M H2SO4, at a scan rate of 10 mV s-1 and a temperature of 298 K 34 Fig. 2.3 The EQCM mass change responses for the Vulcan XC-72 carbon film quartz crystal electrode (C-QCE) recorded simultaneously with the CV in deaerated 0.5 M H2SO4 at a scan rate of 10 mV s-1 and a temperature of 298 K 36 Fig. 2.4 Schematic diagram of the mass change of C-QCE during the positive scan of CV by EQCM 37 Fig. 2.5 (a) CV and (b) EQCM data for Vulcan XC-72 C-QCE at a scan rate of 10 mV s-1 in deaerated 0.5 M H2SO4 at 298 K after holding at a constant potential of 1.2 V for 0, 3 and 15 h. 39 Fig. 2.6 EQCM mass change (positive CV scan) for 1000 cycles 40 Fig. 2.7 Maximum mass gain and mass drop onset potential vs. CV cycles 41 Fig. 2.8 EQCM mass change versus time for the XC 72 carbon support as a function of specific potentials in deaerated 0.5 M H2SO4 at a scan rate of 10 mV s-1 and a temperature of 298 K. 42 Fig. 2.9 EQCM mass change (positive CV scan) of (a) the original, and (b) normalized by the BET surface area for XC-72 , ECP300 and ECP 600 in deaerated 0.5 M H2SO4 at a scan rate of 10 mV s-1 and a temperature of 298 K. 45 Fig. 2.10 EQCM mass change (positive CV scan) for MWCNTs in deaerated 0.5 M H2SO4 at a scan rate of 10 mV s-1 and a temperature of 298 K. 47 Fig. 2.11 EQCM mass change of XC-72 with and without PTFE in deaerated 0.5 M H2SO4 at a scan rate of 10 mV s-1 and a temperature of 298 K. 49 Fig. 2.12 EQCM mass change of XC-72 in N2 purged and O2 purged 0.5M H2SO4 at a scan rate of 10 mV s-1 and a temperature of 298 K. 52 Fig. 3.1 The XRD patterns of carbon black XC-72 after various temperature treatments 58 Fig. 3.2 The plots of the interlayer spacing d(002), crystalline width (La) and the crystalline height (Lc) as a function of heating-treatment temperature 60 Fig. 3.3 XPS spectra of XC-72 before and after heat treatment 63 Fig. 3.4 The test of wettability for as-received XC-72 and graphitized XC-72 64 Fig. 3.5 EQCM mass change (positive CV scan) of the original, in deaerated 0.5 M H2SO4 at a scan rate of 10 mV s-1 and a temperature of 298 K 66 Fig. 3.6 EQCM mass change (positive CV scan) of normalized by the BET surface area for XC-72 and graphitized XC-72 in deaerated 0.5 M H2SO4 at a scan rate of 10 mV s-1 and a temperature of 298 K 66 Fig. 3.7 The Raman spectrum of the graphitized XC-72 after oxygen plasma treatment for 0, 10, 20 and 30 seconds 69 Fig. 3.8 The general XPS spectra of graphitized XC-72 under different oxygen plasma treatment times 70 Fig. 3.9 The peak fitting of the C1s XPS spectra of XC-72 carbon blacks under different oxygen plasma treatment times 73 Fig. 3.10 The percentage of each component of XC-72 carbon supports under different oxygen plasma treatment times 74 Fig. 4.1 SPS-511S spark plasma sintering system (Sumitomo Coal Mining) [102] 79 Fig. 4.2 Plot the X-ray diffraction patterns of three carbon supports, AR XC-72, SPS XC-72 and HT XC-72 83 Fig. 4.3 The TEM image of Vulcan XC-72 and the cutaway model of a carbon-black particle with concentric layers 85 Fig. 4.4 The TEM images for three carbon supports, (a) AR XC-72, (b) SPS XC-72 and (c)HT XC-72 86 Fig. 4.5 XPS spectra for different carbons, AR XC-72, SPS XC-72 and HT XC-72 90 Fig. 4.6 Dispersion of different carbon blacks HT XC-72, SPS XC-72 and as-received XC-72 in water 90 Fig. 4.7 EQCM mass change (positive CV scan) of normalized by the BET surface area for AR XC-72 , SPS XC-72 and HT XC-72 in deaerated 0.5 M H2SO4 at a scan rate of 10 mV s-1 and a temperature of 298 K 92 Fig. 4.8 Through-plane electrical conductivity of different carbon blacks. 93 Fig. 4.9 TGA curves of different carbon blacks. 94 Fig. 4.10 TEM images of Pt catalytic particles deposited on (a) AR XC-72, 98 LIST OF TABLES Table 1 1 The summary of characteristics and applications for major fuel cells 5 Table 1 2 List of characteristics of carbon blacks as catalyst supports for PEMFCs 15 Table 1 3 The requirements for a suitable carbon support and data of XC-72 16 Table 1 4 The main characteristics of different carbon support materials 18 Table 2 1 The BET data and EQCM results of XC-72, ECP300 and ECP600. 44 Table 2 2 A comparison of carbon corrosion measurement approaches 50 Table 3 1 The interlayer spacing d(002), the crystalline width (La) and the crystalline height (Lc) at various heating-treatment temperature 59 Table 3 2 BET specific surface area and pore volume data of as received XC-72 and graphitized carbon blacks 62 Table 3 3 The BET and EQCM data for as received and graphitized XC-72 65 Table 3 4 The O/C ratio of graphitized carbon XC-72 under different oxygen plasma treatment times 71 Table 3 5 The ID/IG ratio, BET surface are and O/C ratio of graphitized carbon XC-72 under different oxygen plasma treatment times 72 Table 4 1 The 2θ(002) , interlayer spacing d(002) and BET surface area (S) at various SPS heating temperatures and times 81 Table 4 2 The interlayer spacing d(002), the crystalline width (La) and the crystalline thickness (Lc) for three carbons 84 Table 4 3 BET specific surface area and pore volume data of as received XC-72 and treated carbon blacks 88 Table 4 4 The O/C ratio of three carbons, AR XC-72, SPS XC-72 and HT XC-72 89 Table 4 5 The BET and EQCM data for AR XC-72, SPS XC-72 and HT XC-72 92

    [1] W. Grove, On voltaic series and the combination of gases by platinum. Philosophical Magazine and Journal of Science, 14, (1839)127-130,.
    [2] L. Mond and C. Langer, A new form of gas battery. Proceedings of the Royal Society of London, 46, (1889) 280-285,.
    [3] F. T. Bacon, Fuel cells, past, present and future, Electrochim. Acta, 14, (1969) 569 -585.
    [4] Mekhilef, S., Saidur, R., Safari, A., Comparative study of different fuel cell technologies. Renew. Sustain. Energy Rev. 16(1), (2012) 981–989
    [5] D. Carter, J. Wing, The fuel cell industry review, (2013) Accessible at: http://fuelcelltoday.com/analysis/industry-review/2013/the-industry-review-2013
    [6] Global Market Insights, Inc. (2016) Accessible at: https://www.gminsights.com/pressrelease/fuel-cell-market
    [7] Sopian K. Challenges and future developments in proton exchange membrane fuel cells. Elsevier Ltd. (2005).
    [8] Therdthianwong A, Saenwiset P, Therdthianwong S. Cathode catalyst layer design for proton exchange membrane fuel cells. Fuel, 91 (2012), Issue 1, 192–199
    [9] Comparison of fuel cell technologies. DOE Energy Efficiency and Renewable Energy Information Center; (2008).
    [10] B. D. James, Jennie M. Huya-Kouadio, C. Houchins , Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems for Transportation Applications: 2015 Update, (2015)
    [11] DOE Fuel Cell Technologies Office Record 2014, (2014) Accessible at: https://energy.gov/sites/prod/files/14012_fuel_cell_system_cost_2013.pdf
    [12] FY 2016 Annual Progress Report, DOE Hydrogen and Fuel Cells Program, 2016
    [13] M.S. Wilson, F.H. Garzon, K.E. Sickafus, S. Gottesfeld, J. Electrochem. Soc. 140 (1993) 2872.
    [14] R.L. Borup, J.R. Davey, F.H. Garzon, D.L. Wood, M.A. Inbody, J. Power Sources 163 (2006) 76–81.
    [15] Sharma S, Pollet BG. Support materials for PEMFC and DMFC electrocatalysts—a review. J Power Sources 2012;208:96–119.
    [16] Han, M. and Chan, S.H. and Jiang, S.P., Development of carbon-filled gas diffusion layer for polymer electrolyte fuel cells Journal of Power Sources. 159 1005-1014 (2006)
    [17] C. Lim, C.Y. Wang, Effects of hydrophobic polymer content in GDL on power performance of a PEM fuel cell, Electrochim. Acta 49 (2004) 4149–4156.
    [18] Passalacqua E, Lufrano F, Squadrito G, Pattia A, Giorgi L. Influence of the structure in low-Pt loading electrodes for polymer electrolyte fuel cells. Electrochim Acta 1998;43:3665–73.
    [19] Yoon YG, Yang TH, Park GG, Lee WY, Kim CS. A multi-layer structured cathode for the PEMFC. J Power Sources 2003;118:189–92.
    [20] Passalacqua E, Lufrano F, Squadrito G, Patti A, Giorgi L. Nafion content in the catalyst layer of polymer electrolyte fuel cells: effects on structure and performance. Electrochim Acta 2001;46:799–805.
    [21] Xiao-yong Zhang and Yi-hong Ding, Thickness-dependent structural and transport behaviors in the platinum–Nafion interface: a molecular dynamics investigation, RSC Adv., 2014, 4, 44214
    [22] Hoogers, G., Fuel Cell Technology Handbook. 2003
    [23] Richard C. Alkire,Philip N. Bartlett,Jacek Lipkowski, Electrochemistry of Carbon Electrodes, Wiley-VCH, Weinheim (2015), 241–262
    [24] Published on the website of Asahi Carbon Co., Ltd. Accessible at: http://www.asahicarbon.co.jp/global_site/product/cb/characteristic.html
    [25] Ermete Antolini, Carbon supports for low-temperature fuel cell catalysts, Applied Catalysis B: Environmental 88 (2009) 1–24
    [26] H. Chang, S.H. Joo, C. Pak, J. Mater. Chem. 17 (2007) 3078.
    [27] S. Jun, S.H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna, O. Terasaki, J. Am. Chem. Soc. 122 (2000) 10712.
    [28] J. Marie, S. Berthon-Fabry, M. Chatenet, E. Chainet, R. Pirard, N. Cornet, P. Achard, J. Appl. Electrochem. 37 (2007) 147.
    [29] G. G. Wildgoose, C. E. Banks, and R. G. Compton, “Metal nanoparticles and related materials supported on Carbon nanotubes: methods and applications,” Small, vol. 2, no. 2, (2006) 182–193
    [30] K. Lee, J. Zhang, H. Wang, D.P. Wilkinson, J. Appl. Electrochem. Progress in the synthesis of carbon nanotube-and nanofiber-supported Pt electrocatalysts for PEM fuel cell catalysis, 36 (2006) 507
    [31] J. Prabhuram, T.S. Zhao, Z.K. Tang, R. Chen, Z.X. Liang, J. Phys. Chem. Multiwalled Carbon Nanotube Supported PtRu for the Anode of Direct Methanol Fuel Cells, B 110 (2006) 5245.
    [32] X. Wang, W. Li, Z. Chen, M. Waje, Y. Yan, Durability investigation of carbon nanotube as catalyst support for proton exchange membrane fuel cell. J. Power Sources 158 (2006) 154.
    [33] H.X. Huang, S.X. Chen, C. Yuan, Platinum nanoparticles supported on activated carbon fiber as catalyst for methanol oxidation. J. Power Sources 175 (2008) 166.
    [34] B.J. Kim, S.J. Park, Nanotechnology 17 (2006) 4395.
    [35] SubsTech (Substances&Technologies), Accessible at : http://www.substech.com
    [36] Saikia BK, Boruah RK, Gogoi PK A X-ray diffraction analysis on graphene layers of Assam coal. J Chem Sci, 2009 - 121(1):103-106..
    [37] Lota K, Sierczynska A, and Lota G Supercapacitors based on nickel oxide/carbon materials composites. International Journal of Electrochemistry.
    [38] Franklin RE. Crystallite growth in graphitizing and nongraphitizing carbons. Proc Roy Soc London Ser A 1951;209:196–218.
    [39] Hishiyama Y, Inagaki M, Kimura S, Yamada S. Graphitization of carbon fibre/glassy carbon composites. Carbon 1974;12(3):249–58.
    [40] A. R. Bunsell, Ed., Fiber Reinforcements for Composite Materials, Elsevier, Amsterdam, 1988. 120
    [41] Accessible at :http://www.graphiteconcept.com/content/view/33/27/
    [42] A. Aiyejina, M. K. S. Sastry. PEMFC Flow Channel Geometry Optimization: A Review, J. Fuel Cell Sci. Technol 9(1), 011011 (2011)
    [43] M. Sevilla, A. B. Fuertes, Catalytic graphitization of templated mesoporous carbons, Carbon 44 (2006) 468-474.
    [44] K. Kinoshita, J. Bett, Electrochemical oxidation of carbon black in concentrated phosphoric acid at 135°C, Carbon 11 (1973) 237-247.
    [45] H. Tang, Z. Qi, M. Ramani, J.F. Elter, PEM fuel cell cathode carbon corrosion due to the formation of air/fuel boundary at the anode, J. Power Sources 158, (2006) 1306-1312.
    [46] T.A. Bekkedahl, L.J. Bregoli, R.D. Breault, E.A. Dykeman, J.P. Meyers, T.W. Patterson, T. Skiba, C. Vargas, D. Yang, J.S. Yi, U.S. Patent 6,913,845 (2005).
    [47] C.R. Reiser, L. Bregoli, T.W. Patterson, J.S. Yi, J.D. Yang, M.L. Perry, T.D. Jarvi, Electrochem. Solid-State Lett. 8 (2005) A273–A276.
    [48] Knights S. D., Colbow K. M., Jean S P. Aging mechanisms and lifetime of PEFC and DMFC, J Power Sources, (2004), 127-134.
    [49] P.J. Ferreira, G.J. la O', Y. Shao-Horn, R.Makharia, H.Gasteiger, Instability of Pt/C Electrocatalysts in Proton Exchange Membrane Fuel Cells, J. Electrochem. Soc. 152, (2005) A2256-A2271.
    [50] S.C. Ball, S.L. Hudson, D. Thompsett, B. Theobald, An investigation into factors affecting the stability of carbons and carbon supported platinum and platinum/cobalt alloy catalysts during 1.2 V potentiostatic hold regimes at a range of temperatures, J. Power Sources 171 (2007) 18-25.
    [51] Y. Shao, G. Yin, Y. Gao, P. Shi, Durability Study of Pt/C and Pt/CNTs Catalysts under Simulated PEM Fuel Cell Conditions, J. Electrochem. Soc. 153 (2006) 1093-1097
    [52] M. Suárez, A. Fernández, J.L. Menéndez,. R. Torrecillas, H. U. Kessel, J. Hennicke,. R. Kirchner and T. Kessel. Challenges and Opportunities for Spark Plasma Sintering: A Key Technology for a New Generation of Materials. 2013
    [53] Alvarez-Clemares I., Mata-Osoro G., Fernández A., Lopez-Esteban S., Pecharromán C., Palomares J., Torrecillas R. & Serafín Moya J. Transparent Alumina/Ceria Nanocomposites By Spark Plasma Sintering. Advanced Engineering Materials, 12, (2010). 11, 1154–1160
    [54] Angerer P., Yu L. G., Khor K. A., Korb G. & Zalite I. Spark-plasma-sintering (SPS) of nanostructured titanium carbonitride powders. Journal of The European Ceramic Society, 25, 11, (2005). 1919-1927.
    [55] Aalund, B., Spark Plasma Sintering, in Ceramic Industry. 2008.
    [56] Guillard, F., et al., Densification of SiC by SPS: Effects of time, temperature, and pressure. Journal of the European Ceramic Society, 2007. 27: p. 2725-2728.
    [57] Masao Tokita, Handbook of Advanced Ceramics: Chapter 11.2.3. Spark Plasma Sintering(SPS) Method, Systems, and Applications, 2013,
    [58] Heon Ham, No-Hyung Park, Inpil Kang, Hyoun Woo Kim and Kwang Bo Shim, Catalyst-free fabrication of graphene nanosheets without substrates using multiwalled carbon nanotubes and a spark plasma sintering process, , Chem. Communications 48 (2012) 6672-6674.
    [59] Tokita M. Mechanism of spark plasma sintering. Proceeding of NEDO international Symposium on Functionally Graded Materials , 1999 , 23 - 33
    [60] K. Kinoshita, Carbon: Electrochemical and Physicochemical Properties, Wiley, New York (1988) 319.
    [61] C.A. Reiser, L. Bregoli, T.W. Patterson, J.S. Yi, J.D. Yang, M.L. Perry and T.D. Jarvi, A reverse-current decay mechanism for fuel cells, Electrochem. Solid-State Lett. 8 (2005), A273-A276.
    [62] Meyers, J.P. and Darling, R.M. Model of carbon corrosion in PEM fuel cells, J. Electrochem. Soc., 153 (2006) A1432-A1442
    [63] L. Li, Y. Xing, Electrochemical Durability of Carbon Nanotubes in Noncatalyzed and Catalyzed Oxidations, J. Electrochem. Soc. 153 (2006) A1823-A1828.
    [64] L. Li, Y. Xing, Electrochemical durability of carbon nanotubes at 80 °C, J. Power Sources 178 (2008) 75-79.
    [65] H.S. Oh, J.G. Oh, S. Haam, K. Arunabha, B. Roh, I. Hwang, H. Kim, On-line mass spectrometry study of carbon corrosion in polymer electrolyte membrane fuel cells, Electrochem. Communi. 10 (2008) 1048-1051.
    [66] L.M. Roen, C.H. Paik, T.D. Jarvi, Electrocatalytic corrosion of carbon support in PEMFC cathodes, Electrochem. Solid-State Lett. 7 (2004) A19-A22.
    [67] A.M. Chaparro, N. Mueller, C. Atienza, L. Daza, Study of electrochemical instabilities of PEMFC electrodes in aqueous solution by means of membrane inlet mass spectrometry, J. Electroanal. Chem. 591 (2006) 69-73
    [68] S. Maass, F. Finsterwalder, G. Frank, R. Hartmann, C. Merten, Carbon support oxidation in PEM fuel cell cathodes, J. Power Sources 176 (2008) 444-451
    [69] D.A. Buttry, in: A.J. Bard (Ed.), Electroanalytical Chemistry, vol. 17, Marcel Dekker, NY, 1991.
    [70] M.D. Levi, N. Levy, S. Sigalov, G. Salitra, D. Aurbach, J. Maier Electrochemical quartz crystal microbalance (EQCM) studies of ions and solvents insertion into highly porous activated carbons J Am Chem Soc, 132 (2010), pp. 13220–13222
    [71] MD. Levi, G. Salitra, N. Levy, D. Aurbach, J. Maier Application of a quartz-crystal microbalance to measure ionic fluxes in microporous carbons for energy storage Nat Mater, 8 (2009), pp. 872–875
    [72] S. Sigalov, M.D. Levi, G. Salitra, D. Aurbach, J. Maier, EQCM as a unique tool for determination of ionic fluxes in microporous carbons as a function of surface charge distribution, Electrochem Commun, 12 (2010), pp. 1718–1721
    [73] J. Barisci, G. Wallace, R. Baughman Electrochemical quartz crystal microbalance studies of single-wall carbon nanotubes in aqueous and non-aqueous solutions Electrochim Acta, 46 (2000), pp. 509–517
    [74] E. Morallón, J. Arias-Pardilla, J.M. Calo, D. Cazorla-Amorós Arsenic species interactions with a porous carbon electrode as determined with an electrochemical quartz crystal microbalance, Electrochim Acta, 54 (2009), pp. 3996–4004
    [75] A.P. Yadav, Y. Sugawara, A. Nishikata, T. Tsuru, Electrochemical stability and oxidation mechanism of carbon support for PEM fuel cell, ECS Trans, 16 (2008) 2093-2099
    [76] V. A. T. Dam, K. Jayasayee, F. A. deBruijn, Determination of the potentiostatic stability of PEMFC electro catalysts at elevated temperatures, Fuel Cells 9 (2009) 453-462
    [77] D.A. Buttry, M.D.Ward, Measurement of interfacial processes at electrode surfaces with the electrochemical quartz crystal microbalance, Chem. Rev. 92 (1992) 1355-1379
    [78] K.H. Kangasniemi, D.A. Condit, T.D. Jarvi, Characterization of Vulcan Electrochemically Oxidized under Simulated PEM Fuel Cell Conditions, J. Electrochem. Soc. 151, (2004) E125-E132.
    [79] Y.Y. Shao, G.P. Yin, J. Zhang, Y.Z. Gao. Comparative investigation of the resistance to electrochemical oxidation of carbon black and carbon nanotubes in aqueous sulfuric acid solution. Electrochim. Acta, 2006, 51 (26): 5853-5857.
    [80] M.J. Bleda-Martinez, D. Lozano-Castello, E. Morallon, D. Cazorla-Amoros, A. Linares-Solano, Chemical and electrochemical characterization of porous carbon materials, Carbon 44 (2006) 2642-2651.
    [81] K. Kinoshita, J.A.S. Bett, Determination of carbon surface oxides on platinum-catalyzed carbon, Carbon 12 (1974) 525-533
    [82] N. Giordano, P.L. Antonucci, E. Passalacqua, L. Pino, A.S. Arico, K. Kinoshita, Relationship between physicochemical properties and electro oxidation behavior of carbon materials, Electrochim. Acta 36 (1991) 1931-1935.
    [83] Yu, P.T., Gu, W., Makharia, R., Wagner, F.T., and Gasteiger, H.A. The impact of carbon stability on PEM fuel cell startup and shutdown voltage degradation, ECS Trans., 3 (2006) 797-809
    [84] M. F. Mathias, R. Makharia, H. A. Gasteiger, J. J. Conley, T. J. Fuller, C. J. Gittleman, S. S. Kocha, D. P. Miller, C. K. Mittelsteadt, T. Xie, S. G. Yan, P. T. Yu, Two fuel cell cars in every garage?, Electrochem. Soc. Interface 14 (2005) 24-35
    [85] Y. Shao, J. Wang, R. Kou, M. Engelhard, J. Liu, Y. Wang, Y. Lin, The corrosion of PEM fuel cell catalyst supports and its implications for developing durable catalysts, Electrochimica Acta 54 (2009) 3109–3114
    [86] S. Ye, M. Hall and P. He, PEM Fuel Cell Catalysts: The Importance of Catalyst Support, ECS Trans. 16 (2008) 2101-2113
    [87] C.-C. Hung, , Lim, P.Y., Chen, J.R., and Shih, H.C. Corrosion of carbon support for PEM fuel cells by electrochemical quartz crystal microbalance, J. Power Sources 196 (1) (2011) 140–146.
    [88] Z. Siroma, N. Fujiwara, T. Ioroi, S. Yamazaki,. H. Senoh, K. Yasuda, K. Taminoto., Electrochemical corrosion of carbon materials in an aqueous acid solution., Electrochemistry 75(2), (2007) 258-260,
    [89] D. Mattia, M. P. Rossi, B. M. Kim, G. Korneva, H. H. Bau, Y. Gogotsi, Effect of Graphitization on the Wettability and Electrical Conductivity of CVD-Carbon Nanotubes and Films, J. Phys. Chem. B. 110 (2006) 9850-9855
    [90] C. Prado-Burguette, A. Linares-Solano, F. Rodriequez-Reinoso, and C. Salinas-Martinez de Lecea, J. Catal., 115, 98 (1989).
    [91] Takasu Y., Kawaguchi T., Sugimoto W., Murakami Y., “Effects of the Surface Area of Carbon Support on the Characteristics of Highly-Dispersed Pt-Ru Particles as Catalysts for Methanol Oxidation,” Electrochimica Acta, 48, (2003) 3861-3868.
    [92] Park G. G., Yang T. H., Yoon Y. G., Lee W. Y., Kim C. S., “Pore Size Effect of the DMFC Catalyst Supported on Porous Materials,” Inter. J. Hydrogen Energy, 28, (2003). 645-650.
    [93] Coloma F., Sepúlveda-Escribano A, Fierro J. L. G., Rodríguez-Reinoso F., Preparation of Platinum Supported on Pregraphitized Carbon Blacks,” Langmuir, 10, (1994) 750-755.
    [94] Takada, T., Nakahara, M., Kumagai, H. and Sanada, Y., Surface modification and characterization of carbon black with oxygen plasma, Carbon, 34 (1996) 1087.
    [95] L. E. Cascarini De Torre, E. J. Bottani,’ A. Martinez-Alonso, A. Cuesta, A. B. Garc A and J. M. D. Tascon, Effects of oxygen plasma treatment on the surface of graphitized carbon black, Carbon 36, 3, (1998) 277-282
    [96] Felix N. Büchi,Minoru Inaba,Thomas J. Schmidt, Polymer Electrolyte Fuel Cell Durability, (2009)
    [97] Kevin G. Gallaghera, Gleb Yushinb and Thomas F. Fuller, The Role of Nanostructure in the Electrochemical Oxidation of Model-Carbon Materials in Acidic Environments, J. Electrochem. Soc. (2010) 157(6), B820-B830
    [98] M.J. Lázaro, L. Calvillo, V. Celorrio, J.I. Pardo, S. Perathoner and R. Moliner, Study and application of carbon black vulcan xc-72r in polymeric electrolyte fuel cells, Carbon Black: Production, Properties and Uses, (2011) 41-68
    [99] By R. S. Oosthuizen and V. O. Nyamori, Carbon nanotubes as supports for palladium and bimetallic catalysts for use in hydrogenation reactions, Platinum Metals Review, 55, (2011) 154-169
    [100] H.P. Boehm, Surface oxides on carbon and their analysis: a critical assessment, Carbon 40 (2002) 145–149
    [101] Wenbao Chen, Xuyan Liu, Yangshuo Liu, Youngkil Bang, Hyung-Il Kim, Preparation of O/W Pickering emulsion with oxygen plasma treated carbonnanotubes as surfactants, Journal of Industrial and Engineering Chemistry 17 (2011) 455–460
    [102] Fuji Electronic Industrial Co., Ltd, Accessible at: http://www.fdc.co.jp
    [103] J. Hao, S. Yu, Y. Jiang, X. Li, Z. Shao and B. Yi, J. Electroanal. Chem., 2015, 756, 201–206.
    [104] T. J. Mason, J. Millichamp, T. P. Neville, A. El-kharouf, B. G. Pollet and D. J. L. Brett, J. Power Sources, 2012, 219, 52–59
    [105] C. Arbizzani, S. Beninati, E. Manferrari, F. Soavi, and M. Mastragostino, “Cryo- and xerogel carbon supported PtRu for DMFC anodes,” Journal of Power Sources, 172, (2007). 578–586

    QR CODE