簡易檢索 / 詳目顯示

研究生: 林其瑞
論文名稱: 中孔洞MMT-1奈米顆粒的選擇性表面功能化與其用以附載鈀並應用於苯酚的水相氫化反應的研究
Selective Surface Functionalization and Palladium Deposition of Mesoporous MMT-1 Nanoparticles for Selective Aqueous-Phase Hydrogenation of Phenol
指導教授: 楊家銘
口試委員: 彭之皓
鄭淑芬
楊家銘
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 97
中文關鍵詞: 綠色化學異相催化氫化反應有序中孔洞二氧化矽苯酚
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用具有橢圓截面孔道之中孔洞二氧化矽MMT-1做為載體,在中孔洞表面進行選擇性功能化及附載鈀奈米顆粒,並將之應用於催化苯酚選擇性氫化反應。由於合成MMT-1所使用的陽離子型界面活性劑cetyltrimethylammonium bromide (C16H33N(CH3)3Br, CTAB)與非離子型界面活性劑tetraethylene glycol dodecyl ether (C12H25(OCH2CH2)4OH, C12EO4)在孔洞內的分佈不均,兩者與孔壁的作用力亦不同,因此我們得以氯仿先萃取出作用力較弱的C12EO4,並將暴露出的表面以及材料外表面嫁接trimethylsilyl (-Si(CH3)3, TMS)官能基,再萃取出剩餘的CTAB,並以dimethylsilyl (-SiH(CH3)2, DMS)或trivinylsilyl (-Si(CHCH2)3, TVS)官能基修飾所暴露的表面,達成在MMT-1中進行選擇性功能化的目的。TMS官能基可在孔洞內形成較疏水的環境,有利於疏水分子在孔道中的擴散,而鈀金屬的附載可藉由以下兩種策略達成,第一個策略是使用具有還原力的DMS官能基將Pd(II)直接還原成鈀奈米顆粒,第二種則是利用TVS官能基與Pd(II)形成π鍵結錯合物,再將之還原。在苯酚的選擇性氫化反應中,選擇性嫁接TMS及TVS官能基並附載鈀奈米顆粒的MMT-1在水相、常壓氫氣(1 atm)及室溫(25℃)的反應條件下,可達到極高的苯酚轉化率(99%)與環己酮選擇率(98%),且在此反應條件下回收觸媒並重複反應十次,其苯酚轉化率(73%)與環己酮選擇率(98%)仍有不錯的表現。相較於商用Pd/C以及附載於隨機嫁接TMS及TVS官能基的MMT-1(或MCM-41)或內表面未功能化的MMT-1的鈀催化劑,使用選擇性嫁接TMS及TVS官能基並附載鈀奈米顆粒的MMT-1有最高的反應催化活性。


    摘要 I 目錄 III 圖目錄 VII 表目錄 XII 第一章 緒論 1 1-1 中孔洞二氧化矽材料 1 1-2 孔洞形貌與結構的調控 6 1-3 Mesoporous Material from Tsing-Hua, MMT-1 10 1-4 中孔洞二氧化矽於催化的應用 18 1-4-1 中孔洞二氧化矽表面修飾有機官能基 19 1-4-2 中孔洞二氧化矽附載貴金屬 22 1-4-3 苯酚的選擇性氫化反應 25 1-5 研究動機與目的 30 第二章 實驗部分 32 2-1 實驗藥品 32 2-2 樣品命名 34 2-3 合成MMT-1及MCM-41 36 2-4 萃取界面活性劑 36 2-4-1 氯仿選擇性萃取C12EO4 36 2-4-2 HMDS/氯仿選擇性萃取及嫁接TMS官能基 36 2-4-3 NH4NO3/乙醇萃取 37 2-4-4 HCl/乙醇萃取 37 2-5 嫁接有機官能基 37 2-5-1 嫁接DMS官能基 37 2-5-2 嫁接TVS官能基 38 2-5-3 MMT-1 (或MCM-41)外表面嫁接TMS官能基 38 2-5-4 MMT-1 (或MCM-41)同時嫁接TMS及TVS官能基 39 2-6 附載鈀金屬 39 2-6-1 嫁接DMS官能基的MMT-1附載鈀金屬 39 2-6-2 嫁接TVS官能基的MMT-1 (或MCM-41)附載鈀金屬 40 2-6-3 內表面未功能化的MMT-1附載鈀金屬 40 2-7 苯酚的選擇性氫化反應 41 2-8 儀器鑑定與分析 42 2-8-1 X光粉末繞射光譜(Powder X-Ray Diffraction, PXRD) 42 2-8-2 熱重分析(Thermogravimetry Analysis, TGA) 44 2-8-3 液態核磁共振光譜(Liquid State Nuclear Magnetic Resonance Spectroscopy, Liquid state NMR) 44 2-8-4 固態核磁共振光譜(Solid State Nuclear Magnetic Resonance Spectroscopy, Solid state NMR) 45 2-8-5 穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 46 2-8-6 掃描穿透式電子顯微鏡(Field Emission Scanning Transmission Electron Microscope, FE-STEM) 47 2-8-7 氮氣物理吸脫附(N2 Physical Adsorption) 48 2-8-8 感應耦合電漿質譜分析(Inductively Coupled Plasma-Mass Spectroscopy, ICP-MS) 52 2-8-9 氣相層析(Gas Chromatography, GC) 53 2-8-10 X光光電子能譜(X-ray Photoelectron Spectroscopy, XPS) 53 2-8-11 元素分析(Elemental Analysis, EA) 54 第三章 結果與討論 55 3-1 MMT-1界面活性劑的去除 55 3-2 選擇性嫁接TMS及DMS官能基並附載鈀金屬的MMT-1 64 3-2-1 NMR鑑定 65 3-2-2 X光粉末繞射與氮氣物理吸脫附鑑定 67 3-2-3 穿透式電子顯微鏡鑑定 69 3-3 選擇性嫁接TMS及TVS官能基並附載鈀金屬的MMT-1 71 3-3-1 NMR鑑定 72 3-3-2 X光粉末繞射與氮氣物理吸脫附鑑定 74 3-3-3 穿透式電子顯微鏡與感應耦合電漿質譜鑑定 77 3-4 苯酚的選擇性氫化反應 79 3-4-1 對照樣品的製備與鑑定-隨機嫁接TMS及TVS官能基並附載鈀金屬的MMT-1(及MCM-41) 79 3-4-2 對照樣品的製備與鑑定-內表面未功能化的MMT-1附載鈀金屬 84 3-4-3 苯酚的選擇性氫化反應結果 87 第四章 結論 93 第五章 參考文獻 95

    1. U. Ciesla and F. Schüth, Microporous Mesoporous Mater., 1999, 27, 131-149.
    2. T. Yanagisawa, T. Shimizu, K. Kuroda and C. Kato, Bull. Chem. Soc. Jpn., 1990, 63, 988-992.
    3. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Nature, 1992, 359, 710-712.
    4. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson and E. W. Sheppard, J. Am. Chem. Soc., 1992, 114, 10834-10843.
    5. R. Schmidt, E. W. Hansen, M. Stoecker, D. Akporiaye and O. H. Ellestad, J. Am. Chem. Soc., 1995, 117, 4049-4056.
    6. N. K. Raman, M. T. Anderson and C. J. Brinker, Chem. Mater., 1996, 8, 1682-1701.
    7. Q. Huo, D. I. Margolese, U. Ciesla, P. Feng, T. E. Gier, P. Sieger, R. Leon, P. M. Petroff, F. Schuth and G. D. Stucky, Nature, 1994, 368, 317-321.
    8. F. Hoffmann, M. Cornelius, J. Morell and M. Fröba, Angew. Chem. Int. Ed., 2006, 45, 3216-3251.
    9. C.-Y. Chen, H.-X. Li and M. E. Davis, Microporous Mater., 1993, 2, 17-26.
    10. C.-Y. Chen, S. L. Burkett, H.-X. Li and M. E. Davis, Microporous Mater., 1993, 2, 27-34.
    11. A. Firouzi, F. Atef, A. G. Oertli, G. D. Stucky and B. F. Chmelka, J. Am. Chem. Soc., 1997, 119, 3596-3610.
    12. Q. Huo, D. I. Margolese, U. Ciesla, D. G. Demuth, P. Feng, T. E. Gier, P. Sieger, A. Firouzi and B. F. Chmelka, Chem. Mater., 1994, 6, 1176-1191.
    13. A. Monnier, F. Schüth, Q. Huo, D. Kumar, D. Margolese, R. S. Maxwell, G. D. Stucky, M. Krishnamurty, P. Petroff, A. Firouzi, M. Janicke and B. F. Chmelka, Science, 1993, 261, 1299-1303.
    14. B. Lindman and H. Wennerström, in Micelles, Springer Berlin Heidelberg, 1980, vol. 87, pp. 1-83.
    15. J. N. Israelachvili, D. J. Mitchell and B. W. Ninham, J. Chem. Soc., Faraday Trans. 2, 1976, 72, 1525-1568.
    16. G. J. d. A. A. Soler-Illia, C. Sanchez, B. Lebeau and J. Patarin, Chem. Rev., 2002, 102, 4093-4138.
    17. M. D. Ward and M. J. Horner, CrystEngComm, 2004, 6, 401-407.
    18. R. Ryoo, S. H. Joo and J. M. Kim, J. Phys. Chem. B, 1999, 103, 7435-7440.
    19. S. Gustafsson, P.-O. Quist and B. Halle, Liq. Cryst., 1995, 18, 545-553.
    20. H. Hagslätt, O. Söderman and B. Jönsson, Liq. Cryst., 1992, 12, 667-688.
    21. C.-M. Yang, C.-Y. Lin, Y. Sakamoto, W.-C. Huang and L.-L. Chang, Chem. Commun., 2008, 5969-5971.
    22. H. Qiu, Y. Sakamoto, O. Terasaki and S. Che, Adv. Mater., 2008, 20, 425-429.
    23. J. E. Haskouri, S. Cabrera, M. Caldés, C. Guillem, J. Latorre, A. Beltrán, D. Beltrán, M. D. Marcos and P. Amorós, Chem. Mater., 2002, 14, 2637-2643.
    24. D. Zhao, Q. Huo, J. Feng, J. Kim, Y. Han and G. D. Stucky, Chem. Mater., 1999, 11, 2668-2672.
    25. P. Kékicheff and B. Cabane, J. Phys. France, 1987, 48, 1571-1583.
    26. S. Alpérine, Y. Hendrikx and J. Charvolin, J. Physique Lett., 1985, 46, 27-31.
    27. W.-C. Huang, L.-L. Chang, Y. Sakamoto, C.-Y. Lin, N.-C. Lai and C.-M. Yang, RSC Adv., 2011, 1, 229-237.
    28. A. Taguchi and F. Schüth, Microporous Mesoporous Mater., 2005, 77, 1-45.
    29. R. J. White, R. Luque, V. L. Budarin, J. H. Clark and D. J. Macquarrie, Chem. Soc. Rev., 2009, 38, 481-494.
    30. A. Barau, V. Budarin, A. Caragheorgheopol, R. Luque, D. Macquarrie, A. Prelle, V. Teodorescu and M. Zaharescu, Catal. Lett., 2008, 124, 204-214.
    31. J. Demel, Sujandi, S.-E. Park, J. Čejka and P. Štěpnička, J. Mol. Catal. A: Chem., 2009, 302, 28-35.
    32. W. Long, N. A. Brunelli, S. A. Didas, E. W. Ping and C. W. Jones, ACS Catal., 2013, 3, 1700-1708.
    33. C.-M. Yang, H.-A. Lin, B. Zibrowius, B. Spliethoff, F. Schüth, S.-C. Liou, M.-W. Chu and C.-H. Chen, Chem. Mater., 2007, 19, 3205-3211.
    34. C. Hahn, P. Morvillo and A. Vitagliano, Eur. J. Inorg. Chem., 2001, 2001, 419-429.
    35. A. Sen, Acc. Chem. Res., 1988, 21, 421-428.
    36. A. Sen and T.-W. Lai, J. Am. Chem. Soc., 1981, 103, 4627-4629.
    37. A. Dedieu, Chem. Rev., 2000, 100, 543-600.
    38. U. Schuchardt, D. Cardoso, R. Sercheli, R. Pereira, R. S. da Cruz, M. C. Guerreiro, D. Mandelli, E. V. Spinacé and E. L. Pires, Appl. Catal. A: Gen., 2001, 211, 1-17.
    39. H. Li, J. Liu, S. Xie, M. Qiao, W. Dai, Y. Lu and H. Li, Adv. Funct. Mater., 2008, 18, 3235-3241.
    40. M. Chatterjee, H. Kawanami, M. Sato, A. Chatterjee, T. Yokoyama and T. Suzuki, Adv. Synth. Catal., 2009, 351, 1912-1924.
    41. N. Mahata and V. Vishwanathan, J. Catal., 2000, 196, 262-270.
    42. P. Claus, H. Berndt, C. Mohr, J. Radnik, E.-J. Shin and M. A. Keane, J. Catal., 2000, 192, 88-97.
    43. N. Mahata, K. V. Raghavan and V. Vishwanathan, Appl. Catal. A: Gen., 1999, 182, 183-187.
    44. G. Neri, A. M. Visco, A. Donato, C. Milone, M. Malentacchi and G. Gubitosa, Appl. Catal. A: Gen., 1994, 110, 49-59.
    45. S. Velu, M. P. Kapoor, S. Inagaki and K. Suzuki, Appl. Catal. A: Gen., 2003, 245, 317-331.
    46. H. Liu, T. Jiang, B. Han, S. Liang and Y. Zhou, Science, 2009, 326, 1250-1252.
    47. Y. Pérez, M. Fajardo and A. Corma, Catal. Commun., 2011, 12, 1071-1074.
    48. J. Matos and A. Corma, in Appl. Catal. A: Gen., 2011, vol. 404, pp. 103-112.
    49. C. M. Cirtiu, A. F. Dunlop-Briere and A. Moores, Green Chem., 2011, 13, 288-291.
    50. P. Makowski, R. Demir Cakan, M. Antonietti, F. Goettmann and M.-M. Titirici, Chem. Commun., 2008, 999-1001.
    51. Y. Wang, J. Yao, H. Li, D. Su and M. Antonietti, J. Am. Chem. Soc., 2011, 133, 2362-2365.
    52. H. Liu, Y. Li, R. Luque and H. Jiang, Adv. Synth. Catal., 2011, 353, 3107-3113.
    53. Z. Li, J. Liu, C. Xia and F. Li, ACS Catal., 2013, 3, 2440-2448.
    54. J.-F. Zhu, G.-H. Tao, H.-Y. Liu, L. He, Q.-H. Sun and H.-C. Liu, Green Chem., 2014, 16, 2664.
    55. V. Z. Fridman and A. A. Davydov, J. Catal., 2000, 195, 20-30.
    56. N. Lang and A. Tuel, Chem. Mater., 2004, 16, 1961-1966.
    57. R. Boukherroub, C. Chatgilialoglu and G. Manuel, Organometallics, 1996, 15, 1508-1510.
    58. J. Trébosc, J. W. Wiench, S. Huh, V. S. Y. Lin and M. Pruski, J. Am. Chem. Soc., 2005, 127, 3057-3068.
    59. N. Yilmaz, M. Mizukami and K. Kurihara, Langmuir, 2007, 23, 6070-6075.
    60. C. H. Rochester and D.-A. Trebilco, J. Chem. Soc., Faraday Trans. 1, 1978, 74, 1137-1145.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE