研究生: |
阿迪夏爾馬 Aditya Sharma |
---|---|
論文名稱: |
使用二維可重構超材料陣列的太赫茲波控制器之實驗驗證 Experimental verification of THz wave manipulator using 2D reconfigurable metamaterial array |
指導教授: |
王威智
Wang, Wei-Chih |
口試委員: |
陳致真
Chen, Chih-Chen 胡日州 Ho, J. H. |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 英文 |
論文頁數: | 86 |
中文關鍵詞: | 電光 、太赫茲 、漁網超材料 、光束轉向 、梯度超材料 、透鏡 |
外文關鍵詞: | electro-optic, fishnet metamaterial, gradient metamaterial, terahertz, beam steering, lensing |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在表徵和測試電光可調諧太赫茲梯度漁網超材料。表徵包括確定不同的材料特性,例如折射率和消光係數,而測試包括確定超材料操縱入射太赫茲光束的不同能力(例如彎曲效應、透鏡效應等)。
在本論文中,提出了在太赫茲中使用可調諧漁網梯度漁網超材料(TGFM)進行波操縱的概念。 TGFM 設計有優化的晶胞幾何形狀和尺寸,具有大的負折射率和偏振無關和入射角不敏感的特性。使用不同的模擬以及實驗推導太赫茲輻射的 S 參數來解釋波操縱。這些 S 參數也用於確定 TGFM 的材料特性。所提出的 TGFM 能夠將入射光束彎曲到總共 11.88° 的角度。
This Research aims at characterization and testing of an electro-optic Tunable Terahertz Gradient fishnet metamaterial. The characterization includes the determination of different material properties such as refractive index and extinction coefficient whereas the testing include the determination of different abilities of the metamaterial to manipulate the incident terahertz beams (such as bending effect, lensing effect, etc.).
In this thesis, the concept of wave manipulation using a tunable fishnet gradient fishnet metamaterial (TGFM) in THz is presented. The TGFM is designed with optimized unit-cell geometries and dimensions with large negative refractive indices and polarization-independent and incident angle insensitive properties. Wave manipulation was explained using different simulations as well as experimentally deriving the S parameter of the THz radiation. These S parameters were also used to determine the material properties of the TGFM. The proposed TGFM possesses the ability to bend the incident beams to an angle of 11.88° in total.
[1] Ajito, K., et al. "Terahertz Spectroscopy Methods and Instrumentation." (2017): 432-438.
[2] Prabhu, Shriganesh. "Tera-Hertz (THz) Spectroscopy and Applications." International Conference on Fibre Optics and Photonics. Optical Society of America, 2014.
[3] Hu, Binbin B., and Martin C. Nuss. "Imaging with terahertz waves." Optics letters 20.16 (1995): 1716-1718.
[4] Kleine-Ostmann, T., et al. "Continuous-wave THz imaging." Electronics Letters 37.24 (2001): 1461-1463
[5] Jepsen, P. Uhd, David G. Cooke, and Martin Koch. "Terahertz spectroscopy and imaging–Modern techniques and applications." Laser & Photonics Reviews 5.1 (2011): 124-166.
[6] Yang, Ping, et al. "6G wireless communications: Vision and potential techniques." IEEE Network 33.4 (2019): 70-75.
[7] Park, Sung-Hyeon, Jin-Wook Jang, and Hak-Sung Kim. "Non-destructive evaluation of the hidden voids in integrated circuit packages using terahertz time-domain spectroscopy." Journal of Micromechanics and Microengineering 25.9 (2015): 095007.
[8] Chan, Wai Lam, et al. "A single-pixel terahertz imaging system based on compressed sensing." Applied Physics Letters 93.12 (2008): 121105.
[9] Murakami, Hironaru, et al. "Scanning laser THz imaging system." Journal of Physics D: Applied Physics 47.37 (2014): 374007.
[10] Wang, Wei-Chih, Jingdong Luo, and Alex KY Jen. "Electro-optic polymer prism beam deflector." Optical Engineering 48.11 (2009): 114601.
[11] Engheta, Nader, and Richard W. Ziolkowski, eds. Metamaterials: physics and engineering explorations. John Wiley & Sons, 2006.
[12] Veselago, Victor Georgievich. "The Electrodynamics of Substances with Simultaneously Negative Values of Img Align= Absmiddle Alt= ϵ Eps/Img and μ." Physics-Uspekhi 10.4 (1968): 509-514.
[13] Depine, Ricardo A., and Akhlesh Lakhtakia. "A new condition to identify isotropic dielectric‐magnetic materials displaying negative phase velocity." Microwave and Optical Technology Letters 41.4 (2004): 315-316.
[14] Zouhdi, Saïd, Ari Sihvola, and Alexey P. Vinogradov, eds. Metamaterials and plasmonics: fundamentals, modelling, applications. Springer Science & Business Media, 2008.
[15] Smith, David R., et al. "Composite medium with simultaneously negative permeability and permittivity." Physical review letters 84.18 (2000): 4184.
[16] Pendry, John B., et al. "Magnetism from conductors and enhanced nonlinear phenomena." IEEE transactions on microwave theory and techniques 47.11 (1999): 2075-2084.
[17] Pendry, John B., et al. "Magnetism from conductors and enhanced nonlinear phenomena." IEEE transactions on microwave theory and techniques 47.11 (1999): 2075-2084.
[18] Shalaev, Vladimir M., et al. "Negative index of refraction in optical metamaterials." Optics letters 30.24 (2005): 3356-3358.
[19] Koschny, Th, et al. "Effective medium theory of left-handed materials." Physical review letters 93.10 (2004): 107402.
[20] Zhou, Jiangfeng, et al. "Negative index materials using simple short wire pairs." Physical Review B 73.4 (2006): 041101.
[21] Zhang, Shuang, et al. "Near-infrared double negative metamaterials." Optics Express 13.13 (2005): 4922-4930.
[22] Zhou, Jiangfeng, et al. "Unifying approach to left-handed material design." Optics letters 31.24 (2006): 3620-3622.
[23] Chang, Cheng-Ling, et al. "Tunable terahertz fishnet metamaterial." Applied Physics Letters 102.15 (2013): 151903.
[24] Li, Jining, et al. "Mechanically tunable terahertz metamaterials." Applied Physics Letters 102.12 (2013): 121101.
[25] Tanoto, H., L. Ding, and J. H. Teng. "Tunable terahertz metamaterials." Intern. J. Terahertz Sci. Tech 6 (2013): 1-25.
[26] Ling, Fang, et al. "A broadband tunable terahertz negative refractive index metamaterial." Scientific reports 8.1 (2018): 1-9.
[27] Zheludev, Nikolay I., and Yuri S. Kivshar. "From metamaterials to metadevices." Nature materials 11.11 (2012): 917-924.
[28] Mailloux, Robert J. Phased array antenna handbook. Artech house, 2017.
[29] https://www.engineeringtoolbox.com/linear-expansion-coefficients-d_95.html. (accessed.
[30] https://www.batop.de/products/terahertz/THz-spectrometer/benchtop-terahertz-spectrometer.html