簡易檢索 / 詳目顯示

研究生: 林品君
Ping-Chun Lin
論文名稱: 駕駛者心智負荷之動態評估
The Dynamic Measurement of Driver Mental Workload
指導教授: 黃雪玲
Sheue-Ling Hwang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 76
中文關鍵詞: 心智負荷駕駛行為動態量測人為失誤
外文關鍵詞: Mental workload, Driving behavior, Dynamic measurement, Human error
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要

    駕駛者必須付出連續且高程度的專注力在駕駛行為上。警覺性降低抑或心智負荷過高都會導致人為失誤的發生。而人為錯誤往往都是交通事故的主因。因此,瞭解駕駛者的心智負荷是非常重要的。
    在這篇論文中,模擬如同平常高速公路的虛擬實境。利用不同狀況的環境或是非預期事件的發生來影響駕駛者的心智負荷。同時,駕駛績效、生理指標、主觀評量值會被擷取下來當成重要資訊。
    根據駕駛指標、生理績效與主觀評量值的資料,利用多元迴歸與多項式網路來建構預測心智負荷的模式。在多元迴歸模式中,主觀評量值與平均車速、煞車平均變動量以及心跳有明顯的相關性。此研究的結果可用來發展適合的輔助系統並且潛在地提升交通舒適與安全。


    Abstract

    Driving task consumes a great deal of operator attention continuously. Either low vigilance or information overload may lead to human errors. Human errors were always major cause of traffic accidents. Therefore, understanding operator mental state is important.

    In this study, the virtual environment of freeway was simulated where the drivers drove as usual. Mental workload of bus drivers were affected via different conditions or unexpected events. At the same time, driving performance, physiological index, and subjective ratings were measured during or after driving.

    We constructed a multiple regression and polynomial neural networks to predict mental workload which are evaluated by data from subjective ratings, task performance, and physiological indexes. In multiple regression model, it is found the mental workload is effectively related to average speed, average braking depth variation, and heart rate (p=0.000<0.01). The results in this study can be referred to develop adaptive aiding systems and also are potential to enhance comfort and safety in traffic.

    Content Chapter 1 Introduction…………………………………………………………………1 1.1 Motivation 1 1.2 Importance 2 1.3 Objectives 3 1.4 Research framework 3 Chapter 2 Literature Review...…………………………………………………………5 2.1 Workload 5 2.2 Cognitive Operation Analysis 6 2.2.1 Cognitive load 7 2.2.2 Mental workload 7 2.3 Criteria for Workload Indexes 8 2.4 Measurements of mental workload 10 2.4.1 Physiological techniques 10 2.4.1.1 Brain Activity 10 2.4.1.2 Heart Rate and Heart Rate Variability 12 2.4.1.3 Eyes Activity 14 2.4.1.4 Others 15 2.4.2 Performance-based assessment techniques 18 2.4.2.1 Primary-Task measurement 18 2.4.2.2 Secondary task methodology........................................................... 20 2.4.3 Subjective workload assessment technique 28 2.4.3.1 NASA Task Load Index 28 2.4.3.2 Subjective Workload Assessment Technique 29 2.4.3.3 Cooper-Harper scale 29 2.4.3.4 Modified Cooper-Harper scale 30 2.4.3.5 RSME 30 2.5 Dynamic measurement 31 2.6 Summary 37 Chapter 3 Research Methodology………………………………………………… 39 3.1 Experiment design 41 3.2 Apparatus 42 3.2.1 Simulator design 42 3.2.2 Heart rate monitors 43 3.3 Data Collection 43 3.3.1 Driving performance 43 3.3.2 Physiological measures 44 3.3.3 Subjective ratings 44 3.4 Experimental procedure 45 3.5 Expected Results 46 Chapter 4 Results……………………………………………………………………..47 4.1 Comparison of mental workload under normal condition and emergency condition……...……………………….…………………………………….47 4.2 Development of Mental workload Model…………………………………..48 4.3 Using Polynomial net (GMDH) to construct the model……………………54 4.3.1 Polynomial net (GMDH)…………………………………………… 54 4.3.2 Advantages in Polynomial Neural Network approach 56 4.3.3 Results 57 Chapter 5 Discussions...……………………………………………………………...58 5.1 Discussions of the multiple linear regression……………………………….58 5.2 Disscussions of the polynomial nets(GMDH) 60 5.3 Comparisons of regression method and the polynomial networks…………61 5.4 Application – Yerkes-Dodson law (inverted U shape)...…………………62 Chapter 6 Conclusion………………………………………………....................…66 6.1 Contribution and Implications to application area 66 6.2 Limitation 67 6.3 Future research 68 References……………………………………………………………………………70 Appendix Ⅰ…………………………………………………………………………74 Appendix Ⅱ…………………………………………………………………………75 Appendix Ⅲ…………………………………………………………………………76 List of Tables Table 2.1 Performance indexes for measuring drivers’ mental workload……………20 Table 2.2 NASA-TLX rating scale (Hart and Staveland,1988)………………………29 Table 2.3 Dynamics Measurements of Mental Workload……………………………34 Table 2.3 Dynamics Measurements of Mental Workload (con.1)……………………35 Table 2.3 Dynamics Measurements of Mental Workload (con.2)……………………36 Table 3.1 Experimental layout…………………………………………..……………41 Table 3.2 Dependent variables……………………………………………………….42 Table 4.1 Statistics of mental workload under normal condition and emergency condition…………………………………………………………………...47 Table 4.2 ANOVA of mental workload under normal condition and emergency condition…………………………………………………………………...47 Table 4.3 Curve estimation…………………………………………………………..48 Table 4.4 Comparison the variance of residuals for different levels of predicted mental workload…………………………………………………………………...51 Table 4.5 Entered variables…………………………………………………………..52 Table 4.6 ANOVA analysis…………………………………………………………...52 Table 4.7 Model summary……………………………………………………………53 Table 4.8 Coefficients table……………………………………….………………….54 Table 5.1 Comparisons of regression method and the polynomial nets.......................61 Table 5.2 Comparisons of results in regression method and the polynomial nets.......61 List of Figures Fig. 1.1 Research framework.........................................................................................4 Fig. 2.1 The adaptive task allocation human-computer interface……………………32 Fig. 3.1 The flow chart of implementation process………………………………….40 Fig. 3.2 The process of experiment and data collection……………………………..44 Fig. 3.3 The experiment procedure…………………………………………………..45 Fig. 4.1 Normal Probability Plot…………………………………………………….50 Fig. 4.2 Results of polynomial neural networks…………………………………….57 Fig. 5.1 An inverted U-shaped curve depicting the relationship between a measure of stress or arousal horizontal axis and efficiency of performance of a cognitive task vertical axis……………………………………………………………..62 Fig. 5.2 Scatter plot showing the relationship between “mental workload” and “1/average speed”……………………………………………………………63 Fig. 5.3 Scatter plot showing the relationship between “mental workload” and “average braking depth variation”…………………………………………...64

    References

    Alm, H., Nilsson, L. (1995). The effects of a mobile telephone task on driver behaviour in a car following situation. Acc. Anal. Preven. 27 (5), 707–715.
    Bielski, J., Wolowicki, J., Zeyland, A. (1976). The ergonomic evaluation of work stress in the furniture industry. Applied Ergonomics 7 (2), 89–91.
    Bauer, L. O., Goldstrein, R., & Stern, J. A. (1987). Effects of information-processing demands on physiological response patterns. Human Factors, 29, 213-234.
    Backs, R.W., Walrath, L.C. (1992). Eye movement and papillary response indices of mental workload during visual search of symbolic displays. Applied Ergonomics 23 (4), 243–254.
    Brookhuis, K., de Vries, G., de Waard, D. (1991). The effects of mobile telephoning on driving performance. Accident Anal. Prev. 23, 309–316.
    Collet, C., Petit, C., Champely S., & Dittmar, A. (2003). Assessing workload through physiological measurements in bus drivers using an automated. Human Factors, Vol. 45, No.4, 539-548.
    Camp, G., Paas, F., Rikers, R. & Merrienboer, J. (2001). Dynamic problem selection in air traffic control training: a comparison between performance, mental effort and mental efficiency. Computers in Human Behavior 17, 575–595.
    CasaLi, J. G. & Wierwille, W. W. (1983). A comparison of rating scale, secondary task, physiological, and primary task workload estimation techniques in a simulated flight task emphasizing communications load. Human Factors, Vol. 25, No.6, 623-641.
    Cooper, G., Harper, R. (1969). The use of pilot ratings in the evaluation of aircraft handling qualities. NASA Ames Technical Report, NASA TN-D-5153, NASA Ames Research Center, California.
    Cnossen, F., Rothengatter, T., & Meijman, T. (2000). Strategic changes in task performance in simulated car driving as an adaptive response to task demands. Transportation Research Part F, 3, 123–140.
    De Waard, D. (1996). The measurement of drivers’ mental workload. Ph.D. Thesis, University of Groningen. Haren, The Netherlands: University of Groningen, Traffic Research Center. [http://home.zonnet.nl/waard2] 94/10/08
    Fairclough, S. H. & Houston, K. (2004). A metabolic measure of mental effort. Biological Psychology 66, 177–190.
    Fuller, R. (2005). Towards a general theory of driver behavior. Accident Analysis and Prevention 37, 461-472.
    Gonzalez, C. (2004).Learning to make decisions in dynamic environments: Effects of time constraints and cognitive abilities. Human Factors, Vol. 46, No.3, 449-460.
    Gomer, F.E., Siverstein, L.D., Berg, W.K., Lassiter, D.L. (1987). Changes in electromyographic activity associated with occupational stress and poor performance in the workplace. Human Factors 29 (2), 131–143.
    Hancock, P. A., & Chignell, M. H. (1988). Mental workload dynamics in adaptive interface design. IEEE Transactions on Systems, Man and Cybernetics, Vol. 18, No.4, 647-658.
    Hancock, P.A. (1989). A dynamic model of stress and sustained attention. Human Factors 31 (5), 519–537.
    Haigney, D.E., Taylor, R.G., Westerman, S.J. (2000). Concurrent mobile (cellular) phone use and driving performance: task demand characteristics and compensatory processes. Transport. Res., Part F, 113–121.
    Hering, K. (1999). Situationsabhangiges Verfahren zur standardisierten Messung der kognitiven Beanspruchung im Strasenverkehr. Aachen: Shaker.
    Haigney, D. E., Taylor, R. G., & Westerman, S. J. (2000). Concurrent mobile (cellular) phone use and driving performance: task demand characteristics and compensatory process. Transportation Research Part F, 3, 113–121.
    Jung, H. S. & Jung, H.-S. (2001). Establishment of overall workload assessment technique for various tasks and workplaces. International Journal of Industrial Ergonomics 28, 341–353.
    Lin, D. Y. & Hwang, S. L. (1999). Use of neural networks to achieve dynamic task allocation: a flexible manufacturing system example. International Journal of Industrial Ergonomics 24, 281-298.
    Lin, Y., Zhang, W. J. & Watson, L.G. (2003). Using eye movement parameters for evaluating human-machine interface frameworks under normal control operation and fault detection situations. Int. J. Human-Computer Studies 59, 837-873.
    LC technologies (2000). The Eyegaze Development System for Windows NT, User’s Guide (March). LC Technologies, Inc., Fairfax, Virginia, USA.
    Liu, B. S. and Lee, Y. H. (2005). Effects of car-phone use and aggressive disposition
    during critical driving maneuvers. Transportation Research Part F 8, 369-382.
    Liu,Y. C. and Wen, M. H.(2004). Comparison of head-up display (HUD) vs. head-down display (HDD): driving performance of commercial vehicle operators in Taiwan. Int. J. Human-Computer Studies 61, 679-697.
    Moon, B.S., Lee, H.C., Lee, Y.H., Park, J.C., Oh, I.S. & Lee, J.W. (2002). Fuzzy systems to process ECG and EEG signals for quantification of the mental workload. Information Sciences 142, 23–35.

    Miyake, S. (2001). Multivariate workload evaluation combining physiological and subjective measures. International Journal of Psychophysiology 40, 233-238.

    Matthews, R. M., Legg, S. & Charlton, S. (2003). The effect of cell phone type on drivers subjective workload during concurrent driving and conversing. Accident Analysis and Prevention 35, 451-457.
    McKnight, A.J., McKnight, A.S. (1993). The effect of cellular phone use upon driver attention. Acc. Anal. Preven. 25 (4), 259–265.
    Militello, L. G., Hutton, R. J. B., Pliske, R. M., Knight, B. J., & Klein, G .(1997). A detailed description of how to conduct the ACTA method. Applied Cognitive Task Analysis (ACTA) Methodology. Navy Personnel Research and Development Center .
    May, J.G., Kennedy, R.S., Williams, M.C., Dunlap, W.P., Brannan, J.R., 1990. Eye movement indices of mental workload. Acta Psychologica 75, 75–89.
    Ma, R. and Kaber, D. B.(2005).Situation awareness and workload in driving while using adaptive cruise control and a cell phone. International Journal of Industrial Ergonomics 35, 939-953.
    Mulder, L. J. M. (1992). Measurement and analysis methods of heart rate and respiration for use in applied environments. Biological Psychology, 34, 205–236.
    Oh S.-K.and Pedrycz W. (2002). The design of self-organizing Polynomial Neural Networks. Information Sciences 141 (2002) 237–258.
    Piechulla, W., Mayser, C., Gehrke, H., Konig, W. (2003). Reducing drivers’ mental workload by means of an adaptive man–machine interface. Transportation Research Part F 6, 233–248.
    Patten, C. J. D., Kircher, A., □stlund, J. & Nilsson, L. (2004). Using mobile telephones: cognitive workload and attention resource allocation. Accident Analysis and Prevention 36, 341-350.
    PNN, http://www.pnn.com.ua/PNN-algorithm.html (2006.5.15).
    Rouse, W. B., Edwards, S. L., & Hammer, J. M. (1993). Modeling the dynamics of mental workload and human performance in complex systems. IEEE Transactions on Systems, Man and Cybernetics, Vol. 23, No.6, 1662-1671.
    Rencken, W. D. & Durrant-Whyte, H. F. (1993). A quantitative model for adaptive task allocation in human-computer interfaces. IEEE Transactions on Systems, Man and Cybernetics, Vol. 23, No.4, 1072-1091.
    Recarte, M. A., Nunes, L. (2002). Mental load and loss of control over speed in real driving. Towards a theory of attentional speed control. Transportation Research Part F5 , 111-122.
    Richter, P., Wagner, T., Heger, R., and Weise, G.. (1998). Psychophysiological analysis of mental load during driving on rural roads - A quasi-experimental field study. Volume: 35, Issue: 1, pp. 24.

    Smit, A. S., Eling, P. A., Coenen A. M. (2004). Mental effort affects vigilance enduringly: after-effects in EEG and behavior. International Journal of Psychophysiology 53, 239-243.
    Salvucci, D.D., Goldberg, J.H. (2000). Identifying fixations and saccades in eye-tracking protocols. Eye Tracking Research and Applications Symposium 2000, Palm Beach Gardens, FL, USA, pp. 71–78.
    Su, C. T. (2005). Neural Networks and applications. Dept. of IE &EM, NTHU, p.80.
    Tぴornros J. E. B.,and Bolling A. K. (2005). Mobile phone use- Effects of handheld and handsfree phones on driving performance. Accident Analysis and Prevention,37, 902-909.
    Ullsperger, P., Freude, G. & Erdmann, U. (2001). Auditory probe sensitivity to mental workload changes- an event-related potential study. International Journal of Psychophysiology 40, 201-209.
    Veltman, J. A. & Gaillard, A. W. K. (1996). Physiological indices of workload in a simulated flight task. Biological Psychology 42, 323-342.
    Wickens, C. D., & Hollands, J. G.. (2000). Engineering Psychology And Human Performance, 3rd edition.
    Wierwille, W. W., & Eggemeier, F. T. (1993). Recommendations for mental workload measurement in a test and evaluation environment. Human Factors, Vol. 35(2), 263-281.
    Wilson, G. F. & Russell, C. A. (2003). Real-time assessment of mental workload using psychophysiological measures and artificial neural networks. Human Factors, Vol. 45, No.4, 635-643.
    Wilson, G. F., & Eggemeier, F. T. (1991). Phsiological measures of workload in multi-task environments. In D. Damos (Ed.), Multiple task performance (pp.329-360). London: Taylor & Francis.
    Zijlstra, F.R.H., Doorn, L. V. (1985). The construction of a scale to measure subjective effort, Technical Report, Department of Philosophy and Social Sciences, Delft University of Technology.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE