簡易檢索 / 詳目顯示

研究生: 劉峻幗
Liu, Chun-Kuo
論文名稱: 利用電漿改質的奈米碳管複合材料進行氣體偵測、場發射與發光特性之研究
Applying Plasma Modified Carbon Nanotube Composites for Gas Sensing, Field Emission, and Luminescence Studies
指導教授: 施漢章
Shih, Han-Chang
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2010
畢業學年度: 99
語文別: 英文
論文頁數: 160
中文關鍵詞: 奈米碳管氧化鋅電漿改質與表面活化化學氣相沉積系統微波電漿輔助化學氣相沉積系統氣體偵測場發射陰極發光
外文關鍵詞: carbon nanotubes (CNTs), zinc oxide (ZnO), plasma modification and surface activation, chemical vapor deposition (CVD), microwave plasma enhanced chemical vapor deposition (MPECVD), gas sensing, field emission, cathodoluminescence (CL)
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • CNTs were discovered by Iijima in 1991, and their outstanding physical, chemical, mechanical and electrical properties have been gradually researched due to their unique structure. Because of their nanometer hollow geometry, light weight, large surface area, flexible, high tensile strength, heat transfer and electron mobility, and excellent field emission, many important applications have been demonstrated.
    CNT-based sensors may work at room temperature and have a quite low detection limit; however, they have certain limitations such as low sensitivity, lack of selectivity, irreversibility, and long recovery time. To overcome these limitations, plasma modifications have been used for enhancing the sensing sensitivity. In addition, the plasma treatment can also activate the surface of CNTs, and it may be applied to synthesize the CNT composites. Few researches are discussed on the optoelectronic applications of CNTs due to their lack of luminescence. Therefore, the formation of the composites of a wide band-gap semiconductor ZnO and CNTs should extend the optoelectronic application and reinforce the pristine properties of simplex ZnO and CNT materials.
    In this work, the multi-wall carbon nanotubes (MWCNTs) or single wall carbon nanotubes (SWCNTs) can be successfully synthesized by decomposition of ethanol over a Fe or Fe+Co/MgO catalyst by CVD in a tube furnace system. After a purification process (nitric acid or nitric acid and hydrochloric acid), purified MWCNTs or SWCNTs can be obtained. The plasma modified CNTs were manufactured by MPECVD, and were developed as novel gas sensor materials. In gas sensing tests, the CNT-based gas sensors have shown a p-type response with resistance enhancement upon exposure to ethanol at room temperature. Oxygen plasma modification can increase the sensor response due to the apparent elimination of amorphous carbon, but it has no effective assistance in decreasing the response and recovery time. By applying fluorine plasma modification, the sensor response can increases, and the response and recovery time also decrease apparently due to the existence of numerous fluorine-included functional groups. The sensitivity also increases 2–4 times and the linear range of measurement can also be extended. The enhancement level of the sensing properties in fluorinated MWCNTs is lower than that in fluorinated SWCNTs because the SWCNTs possess larger surface area, higher electron mobility, and more fluorine-included functional groups. Therefore, the plasma modified CNTs have wide potential to apply on room temperature gas sensor devices, especially fluorinated SWCNTs.
    Besides, the ZnO quantum dots can be successfully grown without using catalyst and well attached on the whole surface of MWCNTs with 20 s oxygen plasma treatment (O20). Oxygen plasma treatment to MWCNTs can provide the oxygen-included functional groups to improve the surface activity of MWCNTs, facilitating to grow ZnO quantum dots. O20 shows a small Igreen/IUV ratio, revealing that O20 has a highly crystalline structure with fewer oxygen deficiencies. In addition, O20 also reveals outstanding field emission properties (Eto = 0.27 V/μm, Eth = 3.24 V/μm, and β = 11897). Therefore, ZnO quantum dots attached on oxygen plasma activated MWCNTs successfully combine the particular advantages of ZnO and MWCNTs, and may have potentials to apply on optoelectronic and field emission devices.


    Chapter 1 Introduction 1.1 Overview of carbon nanotubes (CNTs) 1.2 Literature Review of gas sensors 1.2.1 Gas sensing mechanism and affecting factors 1.2.2 Semiconducting metal oxide gas sensor 1.2.3 Conducting polymer gas sensor 1.2.4 CNT-doped gas sensor 1.2.5 CNT-based gas sensor 1.2.6 Modified CNT gas sensor 1.3 Motivation Chapter 2 Experimental 2.1 Experimental flowchart 2.2 Chemical vapor deposition (CVD) system 2.3 Microwave plasma enhanced chemical vapor deposition (MPECVD) system 2.4 Characterizations 2.4.1 Field emission scanning electron microscope (FESEM) 2.4.2 High resolution transmission electron microscope (HRTEM) 2.4.3 X-ray diffractometer (XRD) 2.4.4 Raman spectrometer 2.4.5 X-ray photoelectron spectroscopy (XPS) 2.4.6 Auger electron spectroscopy (AES) 2.4.7 Multi-probe nano-electronics measurement system 2.4.8 Cathodoluminescence (CL) detector 2.4.9 Field emission measurement system 2.4.10 Gas sensing system Chapter 3 Gas sensing properties of different plasma modified MWCNTs 3.1 Experimental 3.1.1 Materials 3.1.2 Characterizations 3.2 Results and discussion 3.2.1 FESEM images 3.2.2 Raman spectra 3.2.3 Survey spectra and C1s, O1s, and F1s spectra of XPS 3.2.4 Electrical properties 3.2.5 Ethanol-sensing properties 3.3 Summary Chapter 4 Gas sensing properties of fluorinated MWCNTs and SWCNTs 4.1 Experimental 4.1.1 Materials 4.1.2 Characterizations 4.2 Results and discussion 4.2.1 FESEM and HRTEM images 4.2.2 Raman spectra 4.2.3 Survey spectra of XPS and AES 4.2.4 C1s spectra of XPS 4.2.5 Ethanol-sensing properties 4.3 Summary Chapter 5 Cathodoluminescence and field emission properties of ZnO/MWCNTs by applying oxygen plasma activation 5.1 Experimental 5.1.1 Materials 5.1.2 Characterizations 5.2 Results and discussion 5.2.1 FESEM images 5.2.2 XRD pattern 5.2.3 HRTEM images and EDS spectra 5.2.4 AES survey spectra 5.2.5 CL spectra 5.2.6 Field emission properties 5.3 Summary Chapter 6 Conclusions and future studies References

    [1] H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, C60: Buckminsterfullerene, Nature, 318 162–163 (1985).
    [2] S. Iijima, Helical microtubules of graphitic carbon, Nature, 354 56–58 (1991).
    [3] S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature, 363 603–605 (1993).
    [4] C.W. Lam, J.T. James, R. McCluskey, S. Arepalli, R.L. Hunter, A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks, Critical Reviews in Toxicology, 36 189–217 (2006).
    [5] P.M. Ajayan, O.Z. Zhou, Applications of carbon nanotubes, Topics in Applied Physics, 80 391–425 (2001).
    [6] G.G. Wildgoose, C.E. Banks, H.C. Leventis, R.G. Compton, Chemically modified carbon nanotubes for use in electroanalysis, Microchim Acta, 152 187–214 (2006).
    [7] G.G. Wildgoose, C.E. Banks, R.G. Compton, Metal nanoparticles and related materials supported on carbon nanotubes: methods and applications, Small, 2 182–193 (2006).
    [8] M. Trojanowicz, Analytical applications of carbon nanotubes: a review, Trends in Analytical Chemistry, 25 480–489 (2006).
    [9] A. Merkoci, Carbon nanotubes in analytical sciences, Microchim Acta, 152 157–174 (2006).
    [10] G. Eranna, B.C. Joshi, D.P. Runthala, R.P. Gupta, Oxide materials for development of integrated gas sensors–a comprehensive review, Critical Reviews in Solid State and Materials Sciences, 29 111–188 (2004).
    [11] A. Modi, N. Koratkar, E. Lass, B. Wei, P.M. Ajayan, Miniaturized gas ionization sensors using carbon nanotubes, Nature, 424 171–174 (2003).
    [12] E.S. Snow, F.K. Perkins, E.J. Houser, S.C. Badescu, T.L. Reinecke, Chemical detection with a single-walled carbon nanotube capacitor, Science, 307 1942–1945 (2005).
    [13] M. Penza, M.A. Tagliente, P. Aversa, M. Re, G. Cassano, The effect of purification of single-walled carbon nanotube bundles on the alcohol sensitivity of nanocomposite Langmuir-Blodgett films for SAW sensing applications, Nanotechnology, 18 185502(12pp) (2007).
    [14] J. Huang, J. Wang, C. Gu, K. Yu, F. Meng, J. Liu, A novel highly sensitive gas ionization sensor for ammonia detection, Sensors and Actuators A, 150 218–223 (2009).
    [15] L. Jiang, H.K. Jun, Y.S. Hoh, J.O. Lim, D.D. Lee, J.S. Huh, Sensing characteristics of polypyrrole-poly(vinyl alcohol) methanol sensors prepared by in situ vapor state polymerization, Sensors and Actuators B, 105 132–137 (2005).
    [16] B.Y. Wei, M.C. Hsu, P.G. Su, H.M. Lin, R.J. Wu, H.J. Lai, A novel SnO2 gas sensor doped with carbon nanotubes operating at room temperature, Sensors and Actuators B, 101 81–89 (2004).
    [17] J.K. Nathan, R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai, Nanotube molecular wires as chemical sensors, Science, 287 622–625 (2000).
    [18] H. Idriss, E.G. Seebauer, Reactions of ethanol over metal oxides, Journal of Molecular Catalysis A, 152 201–212 (2000).
    [19] R. Ionescu, E.H. Espinosa, R. Leghrib, A. Felten, J.J. Pireaux, R. Erni, G.V. Tendeloo, C. Bittencourt, N. Canellas, E. Llobet, Novel hybrid materials for gas sensing applications made of metal-decorated MWCNTs dispersed on nano-particle metal oxides, Sensors and Actuators B, 131 174–182 (2008).
    [20] J. Gong, J. Sun, Q. Chen, Micromachined sol-gel carbon nanotube/SnO2 nanocomposite hydrogen sensor, Sensors and Actuators B, 130 829–835 (2008).
    [21] Y. Hayakawa, Y. Suda, T. Hashizume, H. Sugawara, Y. Sakai, Hydrogen-sensing response of carbon-nanotube thin-film sensor with Pd comb-like electrodes, Japanese Journal of Applied Physics, 46 L362–L364 (2007).
    [22] W.F. Jiang, S.H. Xiao, C.Y. Feng, H.Y. Li, X.J. Li, Resistive humidity sensitivity of arrayed multi-wall carbon nanotube nests grown on arrayed nanoporous silicon pillars, Sensors and Actuators B, 125 651–655 (2007).
    [23] L.H. Nguyen, T.V. Phi, P.Q. Phan, H.N. Vu, C.N. Duc, F. Fossard, Synthesis of multi-walled carbon nanotubes for NH3 gas detection, Physica E, 37 54–57 (2007).
    [24] P.G. Collins, K. Bradley, M. Ishigami, A. Zettl, Extreme oxygen sensitivity of electronic properties of carbon nanotubes, Science, 287 1801–1804 (2000).
    [25] J. Li, Y. Lu, Q. Ye, M. Cinke, J. Han, M. Meyyappan, Carbon nanotube sensors for gas and organic vapor detection, Nano Letters, 3 929–933 (2003).
    [26] M.F. Mabrook, C. Pearson, A.S. Jombert, D.A. Zeze, M.C. Petty, The morphology, electrical conductivity and vapour sensing ability of inkjet-printed thin films of single-wall carbon nanotubes, Carbon, 47 752–757 (2009).
    [27] L. Mahdavian, M.Monajjemi, N. Mangkorntong, Sensor response to alcohol and chemical mechanism of carbon nanotube gas sensors, Fullerenes, Nanotubes, and Carbon Nanostructures, 17 484–495 (2009).
    [28] L. Mahdavian, M.Monajjemi, Alcohol sensors based on SWNT as chemical sensors: Monte Carlo and Langevin dynamics simulation, Microelectronics Journal, 41 142–149 (2010).
    [29] A. Friedberger, P. Kreisl, E. Rose, G. Muller, G. Kuhner, J. Wollenstein, H. Bottner, Micromechanical fabrication of robust low-power metal oxide gas sensors, Sensors and Actuators B, 93 345–349 (2003).
    [30] H.C. Wang, Y. Li , M.J. Yang, Fast response thin film SnO2 gas sensors operating at room temperature, Sensors and Actuators B, 119 380–383 (2006).
    [31] T.R. Ling, C.M. Tsai, Influence of nano-scale dopants of Pt, CaO and SiO2, on the alcohol sensing of SnO2 thin films, Sensors and Actuators B, 119 497–503 (2006).
    [32] E. Comini, G. Faglia, G. Sberveglieri, Y.X. Li, W. Wlodarski, M.K. Ghantasala, Sensitivity enhancement towards ethanol and methanol of TiO2 films doped with Pt and Nb, Sensors and Actuators B, 64 169–174 (2000).
    [33] C. Garzella, E. Comini, E. Bontempi, L.E. Depero, C. Frigeri, G. Sberveglieri, Sol-gel TiO2 and W/TiO2 nanostructured thin films for control of drunken driving, Sensors and Actuators B, 83 230–237 (2002).
    [34] L. Sun, L. Huo, H. Zhao, S. Gao, J. Zhao, Preparation and gas-sensing property of a nanosized titania thin film towards alcohol gases, Sensors and Actuators B, 114 387–391 (2006).
    [35] Q. Ameer, S.B. Adeloju, Polypyrrole-based electronic noses for environmental and industrial analysis, Sensors and Actuators B, 106 541–552 (2005).
    [36] C.P. de Melo, B.B. Neto, E.G. de Lima, L.F.B. de Lira, J.E.G. de Souza, Use of conducting polypyrrole blends as gas sensors, Sensors and Actuators B, 109 348–354 (2005).
    [37] A. Wisitsoraat, A. Tuantranont, C. Thanachayanont, V. Patthanasettakul, P. Singjai, Electron beam evaporated carbon nanotube dispersed SnO2 thin film gas sensor, Journal of Electroceramics, 17 45–49 (2006).
    [38] N.V. Hieu, N.V. Duy, P.T. Huy, N.D. Chien, Inclusion of SWCNTs in Nb/Pt co-doped TiO2 thin-film sensor for ethanol vapor detection, Physica E, 40 2950–2958 (2008).
    [39] N.V. Duy, N.V. Hieu, P.T. Huy, N.D. Chien, M. Thamilselvan, J. Yi, Mixed SnO2/TiO2 included with carbon nanotubes for gas-sensing application, Physica E, 41 258–263 (2008).
    [40] R.J. Wu, Y.C. Huang, M.R. Yu, T.H. Lin, S.L. Hung, Application of m-CNTs/NaClO4/Ppy to a fast response, room working temperature ethanol sensor, Sensors and Actuators B, 134 213–218 (2008).
    [41] T. Zhang, S. Mubeen, N.V. Myung, M.A. Deshusses, Recent progress in carbon nanotube-based gas sensors, Nanotechnology, 19 332001(14pp) (2008).
    [42] P. Qi, O. Vermesh, M. Grecu, A. Javey, Q. Wang, H. Dai, S. Peng K.J. Cho, Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection, Nano Letters, 3 347–351 (2003).
    [43] T. Someya, J. Small, P. Kim, C. Nuckolls, J.T. Yardley, Alcohol vapor sensors based on single-walled carbon nanotube field effect transistors, Nano Letters, 3 877–881 (2003).
    [44] H.J. Song, Y. Lee, T. Jiang, A.G. Kussow, M. Lee, S. Hong, Y.K. Kwon, H.C. Choi, Self-clusterized glycines on single-walled carbon nanotubes for alcohol sensing, Journal of Physical Chemistry C, 112 629–634 (2008).
    [45] C. Cantalini, L. Valentini, I. Armentano, L. Lozzi, J.M. Kenny, S. Santucci, Sensitivity to NO2 and cross-sensitivity analysis to NH3, ethanol and humidity of carbon nanotubes thin film prepared by PECVD, Sensors and Actuators B, 95 195–202 (2003).
    [46] F.E. Jones, A.A. Talin, F. Leonard, P.M. Dentinger, W.M. Clift, Effect of electrode material on transport and chemical sensing characteristics of metal/carbon nanotube contacts, Journal of electronic materials, 35 1641–1646 (2006).
    [47] C. Bittencourt, A. Felten, E.H. Espinosa, R. Ionescu, E. Llobet, X. Correig, J.J. Pireaux, WO3 films modified with functionalised multi-wall carbon nanotubes: Morphological, compositional and gas response studies, Sensors and Actuators B, 115 33–41 (2006).
    [48] E.H. Espinosa, R. Ionescu, B. Chambon, G. Bedis, E. Sotter, C. Bittencourt, A. Felten, J.J. Pireaux, X. Correig, E. Llobet, Hybrid metal oxide and multiwall carbon nanotube films for low temperature gas sensing, Sensors and Actuators B, 127 137–142 (2007).
    [49] K.H. An, S.Y. Jeong, H.R. Hwang, Y.H. Lee, Enhanced sensitivity of a gas sensor incorporating single-walled carbon nanotube-polypyrrole nanocomposites, Advanced Materials, 16 1005–1009 (2004).
    [50] L. Liu, X. Ye, K. Wu, R. Han, Z. Zhou, T. Cui, Humidity sensitivity of multi-walled carbon nanotube networks deposited by dielectrophoresis, Sensors, 9 1714–1721 (2009).
    [51] E. Mendozaa, J. Rodriguez, Y. Li, Y.Q. Zhu, C.H.P. Poa, S.J. Henley, A.R. Rodriguez, J.R. Morante, S.R.P. Silva, Effect of the nanostructure and surface chemistry on the gas adsorption properties of macroscopic multiwalled carbon nanotube ropes, Carbon, 45 83–88 (2007).
    [52] I. Sayago, E. Terrado, E. Lafuente, M.C. Horrillo, W.K. Maser, A.M. Benito, R. Navarro, E.P. Urriolabeitia, M.T. Martinez, J. Gutierrez, Hydrogen sensors based on carbon nanotubes thin films, Synthetic Metals, 148 15–19(2005).
    [53] R. Ionescu, E.H. Espinosa, E. Sotter, E. Llobet, X. Vilanova, X. Correig, A. Felten, C. Bittencourt, G.V. Lier, J.C. Charlier, J.J. Pireaux, Oxygen functionalisation of MWNT and their use as gas sensitive thick-film layers, Sensors and Actuators B, 113 36–46 (2006).
    [54] C.L. Chen, C.F. Yang, V. Agarwal, T. Kim, S. Sonkusale, A. Busnaina, M. Chen, M.R. Dokmeci, DNA-decorated carbon-nanotube-based chemical sensors on complementary metal oxide semiconductor circuitry, Nanotechnology, 21 095504(8pp) (2010).
    [55] Y. Chen, C. Zhu, T. Wang, The enhanced ethanol sensing properties of multi-walled carbon nanotubes/SnO2 core/shell nanostructures, Nanotechnology, 17 3012–3017 (2006).
    [56] Y.L. Liu, H.F. Yang, Y. Yang, Z.M. Liu, G.L. Shen, R.Q. Yu, Gas sensing properties of tin dioxide coated onto multi-walled carbon nanotubes, Thin Solid Films, 497 355–360 (2006).
    [57] Y. Jia, X. Chen, Z. Guo, J. Liu, F. Meng, T. Luo, M. Li, J. Liu, In situ growth of tin oxide nanowires, nanobelts, and nanodendrites on the surface of iron-doped tin oxide/multiwalled carbon nanotube nanocomposites, Journal of Physical Chemistry C, 113 20583–20588 (2009).
    [58] C. Wei, L. Dai, A. Roy, T.B. Tolle, Multifunctional chemical vapor sensors of aligned carbon nanotube and polymer composites, Journal of the American Chemical Society, 128 1412–1413 (2006).
    [59] S. Brahim, S. Colbern, R. Gump, A. Moser, L. Grigorian, Carbon nanotube-based ethanol sensors, Nanotechnology, 20 235502(7pp) (2009).
    [60] M. Penza, R. Rossi, M. Alvisi, M.A. Signore, G. Cassano, D. Dimaio, R. Pentassuglia, E. Piscopiello, E. Serra, M. Falconieri, Characterization of metal-modified and vertically-aligned carbon nanotube films for functionally enhanced gas sensor applications, Thin Solid Films, 517 6211–6216 (2009).
    [61] Y. Zhao, W. Li, Effect of annealing and HNO3-treatment on the electrical properties of transparent conducting carbon nanotube films, Microelectronic Engineering, 87 576–579 (2010).
    [62] C.T. Hu, C.K. Liu, M.W. Huang, S.H. Syue, J.M. Wu, Y.S. Chang, J.W. Yeh, H.C. Shih, Plasma-enhanced chemical vapor deposition carbon nanotubes for ethanol gas sensors, Diamond and Related Materials, 18 472–477 (2009).
    [63] B.P. Zhang, K. Shimazaki, M. Suzuki, T. Shiokawa, Y. Homma, K. Ishibashi, Fabrication of luminescent carbon nanotubes, Microelectronic Engineering, 83 1736–1739 (2006).
    [64] J. Hu, M. Ouyang, P. Yang, C.M. Lieber, Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires, Nature, 399 48–51 (1999).
    [65] M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Room temperature ultraviolet nanowire nanolasers, Science, 292 1897–1899 (2001).
    [66] H. Kind, H. Yan, B. Messer, M. Law, P. Yang, Nanowire ultraviolet photodetectors and optical switches, Advanced Materials, 14 158–160 (2002).
    [67] N. Han, X. Wu, L. Chai, H. Liu, Y. Chen, Counterintuitive sensing mechanism of ZnO nanoparticle based gas sensors, Sensors and Actuators B, 150 230–238 (2010).
    [68] L. Huang, S.P. Lau, H.Y. Yang, E.S.P. Leong, S.F. Yu, Stable superhydrophobic surface via carbon nanotubes coated with a ZnO thin film, Journal of Physical Chemistry B, 109 7746–7748 (2005).
    [69] J. Liu, X. Li, L. Dai, Water-assisted growth of aligned carbon nanotube-ZnO heterojunction arrays, Advanced Materials, 18 1740–1744 (2006).
    [70] W.D. Zhang, Growth of ZnO nanowires on modified well-aligned carbon nanotube arrays, Nanotechnology, 17 1036–1040 (2006).
    [71] G.O. Cervantez, G.R. Morales, J.O. Lopez, Catalytic CVD production of carbon nanotubes using ethanol, Microelectronics Journal, 36 495–498 (2005).
    [72] L. Zheng, X. Liao, Y.T. Zhu, Parametric study of carbon nanotube growth via cobalt-catalyzed ethanol decomposition, Materials Letters, 60 1968–1972 (2006).
    [73] M. Wienecke, M.C. Bunescu, K. Deistung, P. Fedtke, E. Borchartd, MWCNT coatings obtained by thermal CVD using ethanol decomposition, Carbon, 44 718–723 (2006).
    [74] D.N. Futaba, J. Goto, S. Yasuda, T. Yamada, M. Yumura, K. Hat, General rules governing the highly efficient growth of carbon nanotubes, Advanced Materials, 21 4811–4815 (2009).
    [75] Y. Wang, Y.Q. Liu, D.C. Wei, L.C. Cao, L. Fu, X.L. Li, H. Kajiura, Y.M. Li, K. Noda, Controlled growth of single-walled carbon nanotubes at atmospheric pressure by catalytic decomposition of ethanol and an efficient purification method, Journal of Materials Chemistry, 17 357–363 (2007).
    [76] M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Raman spectroscopy of carbon nanotubes, Physics Reports, 409 47–99 (2005).
    [77] A. Felten, C. Bittencourt, and J.J. Pireaux, G.V. Lier, J.C. Charlier, Radio-frequency plasma functionalization of carbon nanotubes surface O2, NH3, and CF4 treatments, Journal of Applied Physics, 98 074308(9pp) (2005).
    [78] H. Ago, T. Kugler, F. Cacialli, W.R. Salaneck, M.S.P. Shaffer, A.H. Windle, R.H. Friend, Work functions and surface functional groups of multiwall carbon nanotubes, Journal of Physical Chemistry B, 103 8116–8121 (1999).
    [79] C. Pirlot, I. Willems, A. Fonseca, J.B. Nagy, Preparation and characterization of carbon nanotube/polyacrylonitrile composites, Advanced Engineering Materials, 4 109–114 (2002).
    [80] T. Xu, J. Yang, J. Liu, Q. Fu, Surface modification of multi-walled carbon nanotubes by O2 plasma, Applied Surface Science, 253 8945–8951 (2007).
    [81] K.H. An, J.G. Heo, K.G. Jeon, D.J. Bae, C. Jo, C.W. Yang, C.Y. Park, Y.H. Lee, Y.S. Lee, Y.S. Chung, X-ray photoemission spectroscopy study of fluorinated single-walled carbon nanotubes, Applied Physics Letters, 80 4235–4237 (2002).
    [82] N.O.V. Plank, L. Jiang, R. Cheung, Fluorination of carbon nanotubes in CF4 plasma, Applied Physics Letters, 83 2426–2428 (2003).
    [83] C. Biloiu, I.A. Biloiu, Y. Sakai, Y. Suda, A. Ohta, Amorphous fluorocarbon polymer (a-C:F)…films obtained by plasma enhanced chemical vapor deposition from perfluoro-octane (C8F18) vapor I: deposition, morphology, structural and chemical properties, Journal of Vacuum Science and Technology A, 22 13–19 (2004).
    [84] G..R. Desiraju, T. Steiner, The weak hydrogen bond: in structure chemistry and biology, Oxford University Press, New York, pp.16 (2001).
    [85] M.S. Dresselhaus, G. Dresselhaus, A. Jorio, A.G.S. Filho, R. Saito, Raman spectroscopy on isolated single wall carbon nanotubes, Carbon, 40 2043–2061 (2002).
    [86] J. Kurti, V. Zolyomi, M. Kertesz, G. Sun, The geometry and the radial breathing mode of carbon nanotubes: beyond the ideal behaviour, New Journal of Physics, 5 125(21pp) (2003).
    [87] T. Hiraoka, S. Bandow, H. Shinohara, S. Iijima, Control on the diameter of single-walled carbon nanotubes by changing the pressure in floating catalyst CVD, Carbon, 44 1853–1859 (2006).
    [88] L.F. Su, J.N. Wang, F. Yu, Z.M. Sheng, H. Chang, C. Pak, Continuous production of single-wall carbon nanotubes by spray pyrolysis of alcohol with dissolved ferrocene, Chemical Physics Letters, 420 421–425 (2006).
    [89] D. Takagi, Y. Homma, H. Hibino, S. Suzuki, Y. Kobayashi, Single-walled carbon nanotube growth from highly activated metal nanoparticles, Nano Letters, 6 2642–2645 (2006).
    [90] J.F. Colomer, C. Stephan, S. Lefrant, G.V. Tendeloo, I. Willems, Z. Konya, A. Fonseca, C. Laurent, J.B. Nagy, Large-scale synthesis of single-wall carbon nanotubes by catalytic chemical vapor deposition (CCVD) method, Chemical Physics Letters, 317 83–89 (2000).
    [91] S.C. Lyu, B.C. Liu, S.H. Lee, C.Y. Park, H.K. Kang, C.W. Yang, C.J. Lee, Large-scale synthesis of high-quality single-walled carbon nanotubes by catalytic decomposition of ethylene, Journal of Physical Chemistry B, 108 1613–1616 (2004).
    [92] Y.H. Yang, C.Y. Wang, U.S. Chen, W.J. Hsieh, Y.S. Chang, H.C. Shih, Large-area single wall carbon nanotubes: synthesis, characterization, and electron field emission, Journal of Physical Chemistry C, 111 1601–1604 (2007).
    [93] X. Bokhimi, A. Morales, T. Lopez, R. Gomez, Crystalline structure of MgO prepared by the sol-gel technique with different hydrolysis catalysts, Journal of Solid State Chemistry, 115 411–415 (1995).
    [94] R. Portillo, T. Lopez, R. Gomez, X. Bokhimi, A. Morales, O. Novaro, Magnesia synthesis via sol-gel: structure and reactivity, Langmuir 12 40–44 (1996).
    [95] J.A. Wang, O. Novaro, X. Bokhimi, T. Lopez, R. Gomez, J. Navarrete, M.E. Llanos, E.L. Salinas, Structural defects and acidic and basic sites in sol-gel MgO, Journal of Physical Chemistry B 101, 7448–7451 (1997).
    [96] T. Lopez, R. Gomez, J. Navarrete, E.L. Salinas, Evidence for Lewis and Bronsted acid sites on MgO obtained by sol-gel, Journal of Sol-Gel Science and Technology, 13 1043–1047 (1998).
    [97] J.A. Wang, O. Novaro, X. Bokhimi, T. Lopez, R. Gomez, J. Navarrete, M.E. Llanos, E.L. Salinas, Characterizations of the thermal decomposition of brucite prepared by sol-gel technique for synthesis of nanocrystalline MgO, Materials Letters 35, 317–323 (1998).
    [98] T. Murakami, K. Mitikami, S. Ishigaki, K. Matsumoto, K. Nishio, T. Isshiki, H. Harima, K. Kisoda, Catalytic mechanism of a Fe-Co bimetallic system for efficient growth of single-walled carbon nanotubes on Si/SiO2 substrates, Journal of Applied Physics, 100 094303(4pp) (2006).
    [99] L. Ding, A. Tselev, J. Wang, D. Yuan, H. Chu, T.P. McNicholas, Y. Li, J. Liu, Selective growth of well-aligned semiconducting single-walled carbon nanotubes, Nano Letters, 9 800–805 (2009).
    [100] S.H. Bae, S.Y. Lee, H.Y. Kim, S. Im S, Comparison of the optical properties of ZnO thin films grown on various substrates by pulsed laser deposition, Applied Surface Science, 168 332–334 (2000).
    [101] B. Lin, Z. Fu, Y. Jia, G. Liao, Defect photoluminescence of undoping ZnO films and its dependence on annealing conditions, Journal of The Electrochemical Society, 148 G110–G113 (2001).
    [102] S.C. Lyu, Y. Zhang, H. Ruh, H.J. Lee, H.W. Shim, E.K. Suh, C.J. Lee, Low temperature growth and photoluminescence of well-aligned zinc oxide nanowires, Chemical Physics Letters, 363 134–138 (2002).
    [103] H.S. Kang, J.S. Kang, S.S. Pang, E.S. Shim, S.Y. Lee, Variation of light emitting properties of ZnO thin films depending on post-annealing temperature, Materials Science and Engineering B, 102 313–316 (2003).
    [104] B.J. Pierce, R.L. Hengehold, Depth-resolved cathodoluminescence of ion-implanted layers in zinc oxide, Journal of Applied Physics, 47 644–651 (1976).
    [105] E.G. Bylander, Surface effects on the low-energy cathodoluminescence of zinc oxide, Journal of Applied Physics, 49 1188–1195 (1978).
    [106] K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, Mechanisms behind green photoluminescence in ZnO phosphor powders, Journal of Applied Physics, 79 7983–7990 (1996).
    [107] C.J. Lee, T.J. Lee, S.C. Lyu, Y. Zhang, H. Ruh, H.J. Lee, Field emission from well-aligned zinc oxide nanowires grown at low temperature, Applied Physics Letters, 81 3648–3650 (2002).
    [108] C.W. Fang, J.M. Wu, L.T. Lee, H.H. Yeh, W.T. Wu, Y.H. Lin, P.J. Tsai, Y.R. Chen, Photocatalytic activity and electron field emission of necked ZnO:Bi nanowires, Electrochemical and Solid-State Letters, 13 K63–66 (2010).
    [109] Y.K. Tseng, C.J. Huang, H.M. Cheng, I.N. Lin, K.S. Liu, I.C. Chen, Characterization and field-emission properties of needle-like zinc oxide nanowires grown vertically on conductive zinc oxide films, Advanced Functional Materials, 13 811–814 (2003).
    [110] C.J. Park, D.K. Choi, J. Yoo, G.C. Yi, C.J. Lee, Enhanced field emission properties from well-aligned zinc oxide nanoneedles grown on the Au/Ti/n-Si substrate, Applied Physics Letters, 90 083107(3pp) (2007).
    [111] Q. Wan, K. Yu, T.H. Wang, C.L. Lin, Low-field electron emission from tetrapod-like ZnO nanostructures synthesized by rapid evaporation, Applied Physics Letters, 83 2253–2255 (2003).
    [112] K. Yu, Y. Zhang, R. Xu, S. Ouyang, D. Li, L. Luo, Z. Zhu, J. Ma, S. Xie, S. Han, H. Geng, Efficient field emission from tetrapod-like zinc oxide nanoneedles, Materials Letters, 59 1866–1870 (2005).
    [113] S. Fan, M.G. Chapline, N.R. Franklin, T.W. Tombler, A.M. Cassell, H. Dai, Self-oriented regular arrays of carbon nanotubes and their field emission properties, Science, 283 512–514 (1999).
    [114] X. Yan, B.K. Tay, P. Miele, Field emission from ordered carbon nanotube-ZnO heterojunction arrays, Carbon, 46 753–758 (2008).
    [115] Y.W. Zhu, F.C. Cheong, T. Yu, X.J. Xu, C.T. Lim, J.T.L. Thong, Effects of CF4 plasma on the field emission properties of aligned multi-wall carbon nanotube films, Carbon, 43 395–400 (2005).
    [116] L. Zhang, L. Balzano, D.E. Resasco, Single-walled carbon nanotubes of controlled diameter and bundle size and their field emission properties, Journal of Physical Chemistry B, 109 14375–14381 (2005).
    [117] W.J. Hsieh, S.H. Lai, L.H. Chan, K.L. Chang, H.C. Shih, Cathodoluminescence and electron field emission of boron-doped a-C:N films, Carbon, 43 820–826 (2005).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE