簡易檢索 / 詳目顯示

研究生: 姜莉敏
Chiang, Li Min
論文名稱: 擾流刺激內皮細胞下與p-YY1S118交互作用之分子及其功能之探討
Identification of p-YY1S118 Interacting Molecules and Related Function under Disturb Flow in Endothelial Cells
指導教授: 裘正健
Chiu, Jeng Jiann
口試委員: 陳韻晶
Chen, Yun Ching
張順福
Chang, Shun Fu
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 72
中文關鍵詞: 擾流
外文關鍵詞: Disturb flow
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 血管動脈粥狀硬化為誘發心血管疾病的主因,好發於血管彎曲和分歧處附近,此處血流型態為振盪型剪應力(oscillatory shear stress, OSS),易引起內皮細胞產生發炎、增生、氧化等反應,所以被認為參與調控血管內壁病變反應;血管內另一種血流型態為脈衝型剪應力(pulsatile shear stree, PSS),主要存在於直通型的血管處,能夠啟動血管內皮細胞的內部訊息傳遞,以抑制內皮細胞產生病變,因此,流體剪應力被認為是調控血管內發炎以及動脈硬化斑形成之重要因子。將給予不同流體型態剪應力處理的人類主動脈內皮細胞,進行磷酸蛋白質體學分析,可發現在振盪型剪應力作用下,會促使Yin Yang 1 (YY1)蛋白serine 118位置磷酸化增加;反之,在脈衝型剪應力作用下,磷酸化蛋白的量卻減少,因此我們推測YY1蛋白的磷酸化(p-YY1)可能與血管動脈粥狀硬化形成相關。YY1是一個具多生物功能性的轉錄因子,先前研究指出細胞因應環境需求或刺激,促使YY1活化或者抑制下游基因的表現,進而調控許多複雜的生物功能,包括了胚胎發育、細胞分化、細胞凋亡及腫瘤生成等,近年來研究則顯示YY1在心血管疾病方面,亦扮演重要角色,然而,內皮細胞之YY1在人類血管動脈粥狀硬化中是否扮演的角色及其作用機制尚未被研究。YY1本身能直接調控基因表現,亦能和其他轉錄共同活化因子及轉錄共同抑制因子一起作用來執行功能,因此,本研究目的為篩選出與磷酸化的YY1蛋白(YY1S118E)以及無法磷酸化的YY1蛋白(YY1S118A)之間交互作用具差異之作用分子。利用酵母菌雙雜交技術,以YY1S118E為餌,對人類cDNA 基因庫進行篩選,得知zinc finger with KRAB and SCAN domains 4 (ZKSCAN4)蛋白與YY1S118E有較強的交互作用,並進一步藉由流體與細胞實驗證實在不同流體剪應力作用下,將影響p-YY1和ZKSCAN4的交互作用,得知振盪型剪應力可促進p-YY1與ZKSCAN4蛋白結合並活化下游Hdm2分子,進而抑制p53蛋白之表現與調控細胞增生。綜合言之,我們的結果顯示p-YY1可能參與血管動脈粥狀硬化生成。


    Atherosclerosis is one of the major cause of cardiovascular disease, which develops preferentially at arterial branches and curvatures. The fluid shear stress in these regions is oscillatory shear stress (OSS) which has been shown to play important roles in modulating various responses involved in endothelial cell (EC) dysfunction such as inflammation, proliferation, and oxidation. The other kind of fluid shear stress is pulsatile shear stress (PSS) which generally occurs in the straight part of vessels and has been shown to elicit signaling transductions to repress EC dysfunction. Therefore, fluid shear stress is considered as an important factor to modulate inflammation and the formation of atherosclerosis plaques in vascular wall. Through the phosphoproteomic analysis of OSS- and PSS-stimulated human aortic ECs (HAECs), we found that OSS induced the serine 118 phosphorylation of yin yang 1 (YY1) whereas PSS repressed the phosphorylation. Thus, we speculate that the YY1 phosphorylation (p-YY1) may contribute to the development of atherosclerosis. YY1 is known as the ubiquitous transcription factor which possesses multiple biological functions. Previous studies have demonstrated that YY1 exerted its functions by activating or repressing gene expression in response to the developmental cues or stimulations from the surrounding microenvironment. The biological functions YY1 involved include embryogenesis, cell differentiation, cell apoptosis, and tumorigenesis. Recently, it has also been reported that YY1 plays critical roles in the cardiovascular diseases. However, the roles and molecular mechanisms of endothelial YY1 in regulation of atherogenesis are still unstated. YY1 can modulate gene expression through directly acting on promoter regions or interacting with transcriptional co-activators or co-repressors to function. Thus, the aim of this study is to identify molecules which have the differential binding activity with phosphorylated YY1 mimicker (YY1S118E) and YY1 phosphorylation blocker (YY1S118A). By utilizing yeast two-hybrid screening technique which YY1S118E was used as bait and human cDNA library as prey, we identified that zinc finger with KRAB and SCAN domains 4 (ZKSCAN4) has stronger binding activity with YY1S118E. In vitro flow apparatus and cell experiment were further used to study the effect of differential flow pattern on the interaction between p-YY1 and ZKSCAN4. OSS was found to induce the association of p-YY1 and ZKSCAN4, which then activated the expression of downstream gene Hdm2 and in turn, inhibited p53 signal to facilitate the cell proliferation. Altogether, our data demonstrated that p-YY1 may involve in the development of atherosclerosis.

    中文摘要 i Abstract iii 總目錄 v 圖目錄 vii 表目錄 viii 第一章 緒論 1 一、研究背景 1 1.1心血管疾病與動脈粥狀硬化 1 1.2血液流體型態與動脈粥狀硬化發炎反應的關係 2 1.3磷酸蛋白質體學分析 4 1.4不同血液流體型態下對內皮細胞做磷酸蛋白質體學分析 6 1.5轉錄因子YY1 6 1.6酵母菌雙雜交系統 10 1.7轉錄因子ZKSCAN4 11 1.8 Hdm2分子與p53分子之關係對細胞功能之影響 12 1.9 p53與細胞週期的調控 13 二、研究動機與目的 14 第二章 實驗材料與方法 16 2.1所用菌株及質體 16 2.2菌種與培養方法 18 2.3聚合酶鏈鎖反應 18 2.4質體建構 18 2.5大腸桿菌轉型 19 2.6大腸桿菌質體抽取 19 2.7菌落聚合酶連鎖反應 20 2.8人類cDNA基因庫放大 20 2.9酵母菌培養 21 2.10酵母菌質體抽取 21 2.11酵母菌雙雜合系統基本操作流程 22 2.12酵母菌轉型 23 2.13酵母菌交配操作 23 2.14酵母菌菌落聚合鏈鎖反應 24 2.15置備正負反應對照組及自體活化測試 24 2.16基因庫篩選流程 25 2.17初級臍帶靜脈內皮細胞培養 26 2.18細胞轉染 26 2.19小片段干擾RNA細胞轉染 27 2.20流體系統 27 2.21免疫共沉澱分析 28 2.22西方墨點法 28 2.23免疫螢光染色分析 30 2.24 Proximity Ligation Assays (PLA)染色 30 第三章 實驗結果 32 3.1餌蛋白基因的建構與自體活化測試 32 3.2正負反應控制組建構與測試 33 3.3酵母菌雙雜交技術篩選 33 3.4候選蛋白之結果 35 3.5內皮細胞中表現YY1S118E與ZKSCAN4的結合較強 36 3.6振盪型剪應力促進內皮細胞磷酸化YY1蛋白與ZKSCAN4結合 36 3.7振盪型剪應力促進內皮細胞Hdm2分子表現進而抑制p53分子 37 3.8 ZKSCAN4分子與磷酸化YY1蛋白促進Hdm2分子表現 39 3.9不同流體型態對細胞增生的影響 39 3.10 ZKSCAN4分子與磷酸化的YY1蛋白對細胞增生的影響 41 第四章 實驗討論 43 第五章 結論 49 第六章 圖表 50 第七章 參考文獻 67

    1. Ross, R., The pathogenesis of atherosclerosis: a perspective for the 1990s. 1993.
    2. Epstein, F.H. and R. Ross, Atherosclerosis—an inflammatory disease. New England journal of medicine, 1999. 340(2): p. 115-126.
    3. Davignon, J. and P. Ganz, Role of endothelial dysfunction in atherosclerosis. Circulation, 2004. 109(23 suppl 1): p. III-27-III-32.
    4. Napoli, C., et al., Fatty streak formation occurs in human fetal aortas and is greatly enhanced by maternal hypercholesterolemia. Intimal accumulation of low density lipoprotein and its oxidation precede monocyte recruitment into early atherosclerotic lesions. Journal of Clinical Investigation, 1997. 100(11): p. 2680.
    5. Asakura, T. and T. Karino, Flow patterns and spatial distribution of atherosclerotic lesions in human coronary arteries. Circulation research, 1990. 66(4): p. 1045-1066.
    6. Chiu, J.-J. and S. Chien, Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiological reviews, 2011. 91(1): p. 327-387.
    7. Ravensbergen, J., et al., Localizing role of hemodynamics in atherosclerosis in several human vertebrobasilar junction geometries. Arteriosclerosis, thrombosis, and vascular biology, 1998. 18(5): p. 708-716.
    8. Cecchi, E., et al., Role of hemodynamic shear stress in cardiovascular disease. Atherosclerosis, 2011. 214(2): p. 249-256.
    9. Nerem, R., Vascular fluid mechanics, the arterial wall, and atherosclerosis. Journal of biomechanical engineering, 1992. 114(3): p. 274-282.
    10. Wang, W., et al., Fluid shear stress stimulates phosphorylation-dependent nuclear export of HDAC5 and mediates expression of KLF2 and eNOS. Blood, 2010. 115(14): p. 2971-2979.
    11. Traub, O. and B.C. Berk, Laminar shear stress mechanisms by which endothelial cells transduce an atheroprotective force. Arteriosclerosis, thrombosis, and vascular biology, 1998. 18(5): p. 677-685.
    12. Pandey, A. and M. Mann, Proteomics to study genes and genomes. Nature, 2000. 405(6788): p. 837-846.
    13. Wilkins, M.R., et al., Guidelines for the next 10 years of proteomics. Proteomics, 2006. 6(1): p. 4-8.
    14. Temporini, C., et al., Integrated analytical strategies for the study of phosphorylation and glycosylation in proteins. Mass spectrometry reviews, 2008. 27(3): p. 207-236.
    15. Graves, J.D. and E.G. Krebs, Protein phosphorylation and signal transduction. Pharmacology & therapeutics, 1999. 82(2): p. 111-121.
    16. Reinders, J. and A. Sickmann, State‐of‐the‐art in phosphoproteomics. Proteomics, 2005. 5(16): p. 4052-4061.
    17. Swaney, D.L., et al., Human embryonic stem cell phosphoproteome revealed by electron transfer dissociation tandem mass spectrometry. Proceedings of the National Academy of Sciences, 2009. 106(4): p. 995-1000.
    18. Olsen, J.V., et al., Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell, 2006. 127(3): p. 635-648.
    19. Hunter, T., Signaling—2000 and beyond. Cell, 2000. 100(1): p. 113-127.
    20. Mann, M., et al., Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. Trends in biotechnology, 2002. 20(6): p. 261-268.
    21. Cohen, P., The role of protein phosphorylation in human health and disease. European Journal of Biochemistry, 2001. 268(19): p. 5001-5010.
    22. Seto, E., Y. Shi, and T. Shenk, YY1 is an initiator sequence-binding protein that directs and activates transcription in vitro. 1991.
    23. Shrivastava, A. and K. Calame, An analysis of genes regulated by the multi-functional transcriptional regulator Yin Yang-1. Nucleic acids research, 1994. 22(24): p. 5151.
    24. Galvin, K.M. and Y. Shi, Multiple mechanisms of transcriptional repression by YY1. Molecular and cellular biology, 1997. 17(7): p. 3723-3732.
    25. Park, K. and M.L. Atchison, Isolation of a candidate repressor/activator, NF-E1 (YY-1, delta), that binds to the immunoglobulin kappa 3'enhancer and the immunoglobulin heavy-chain mu E1 site. Proceedings of the National Academy of Sciences, 1991. 88(21): p. 9804-9808.
    26. Riggs, K., et al., Yin-yang 1 activates the c-myc promoter. Molecular and cellular biology, 1993. 13(12): p. 7487-7495.
    27. Korhonen, P., et al., Changes in DNA binding pattern of transcription factor YY1 in neuronal degeneration. Neuroscience letters, 2005. 377(2): p. 121-124.
    28. Ai, W., Y. Liu, and T.C. Wang, Yin yang 1 (YY1) represses histidine decarboxylase gene expression with SREBP-1a in part through an upstream Sp1 site. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2006. 290(6): p. G1096-G1104.
    29. Riman, S., et al., Phosphorylation of the transcription factor YY1 by CK2α prevents cleavage by caspase 7 during apoptosis. Molecular and cellular biology, 2012. 32(4): p. 797-807.
    30. Thomas, M.J. and E. Seto, Unlocking the mechanisms of transcription factor YY1: are chromatin modifying enzymes the key? Gene, 1999. 236(2): p. 197-208.
    31. Coull, J.J., et al., The human factors YY1 and LSF repress the human immunodeficiency virus type 1 long terminal repeat via recruitment of histone deacetylase 1. Journal of virology, 2000. 74(15): p. 6790-6799.
    32. Yao, Y.-L. and W.-M. Yang, The metastasis-associated proteins 1 and 2 form distinct protein complexes with histone deacetylase activity. Journal of Biological Chemistry, 2003. 278(43): p. 42560-42568.
    33. McGarry, L.C., J.N. Winnie, and B.W. Ozanne, Invasion of v-FosFBR-transformed cells is dependent upon histone deacetylase activity and suppression of histone deacetylase regulated genes. Oncogene, 2004. 23(31): p. 5284-5292.
    34. Grönroos, E., et al., YY1 inhibits the activation of the p53 tumor suppressor in response to genotoxic stress. Proceedings of the National Academy of Sciences of the United States of America, 2004. 101(33): p. 12165-12170.
    35. Santiago, F.S., et al., Yin Yang-1 inhibits vascular smooth muscle cell growth and intimal thickening by repressing p21WAF1/Cip1 transcription and p21WAF1/Cip1-Cdk4-cyclin D1 assembly. Circulation research, 2007. 101(2): p. 146-155.
    36. Sucharov, C.C., K. Dockstader, and T.A. McKinsey, YY1 protects cardiac myocytes from pathologic hypertrophy by interacting with HDAC5. Molecular biology of the cell, 2008. 19(10): p. 4141-4153.
    37. Ecker, K., et al., A RAS recruitment screen identifies ZKSCAN4 as a glucocorticoid receptor-interacting protein. Journal of molecular endocrinology, 2009. 42(2): p. 105-117.
    38. Lee, K. and L.S. Gollahon, Zscan4 interacts directly with human Rap1 in cancer cells regardless of telomerase status. Cancer biology & therapy, 2014. 15(8): p. 1094-1105.
    39. Zalzman, M., et al., Zscan4 regulates telomere elongation and genomic stability in ES cells. Nature, 2010. 464(7290): p. 858-863.
    40. Jiang, J., et al., Zscan4 promotes genomic stability during reprogramming and dramatically improves the quality of iPS cells as demonstrated by tetraploid complementation. Cell research, 2012. 23(1): p. 92-106.
    41. Li, J., et al., ZNF307, a novel zinc finger gene suppresses p53 and p21 pathway. Biochemical and biophysical research communications, 2007. 363(4): p. 895-900.
    42. Oliner, J.D., et al., Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. 1993.
    43. Cahilly-Snyder, L., et al., Molecular analysis and chromosomal mapping of amplified genes isolated from a transformed mouse 3T3 cell line. Somatic cell and molecular genetics, 1987. 13(3): p. 235-244.
    44. Momand, J., et al., The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell, 1992. 69(7): p. 1237-1245.
    45. Honda, R., H. Tanaka, and H. Yasuda, Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS letters, 1997. 420(1): p. 25-27.
    46. Brown, C.J., et al., Awakening guardian angels: drugging the p53 pathway. Nature Reviews Cancer, 2009. 9(12): p. 862-873.
    47. Barak, Y., et al., mdm2 expression is induced by wild type p53 activity. The EMBO journal, 1993. 12(2): p. 461.
    48. Daujat, S., H. Neel, and J. Piette, MDM2: life without p53. TRENDS in Genetics, 2001. 17(8): p. 459-464.
    49. Chen, J., V. Marechal, and A.J. Levine, Mapping of the p53 and mdm-2 interaction domains. Molecular and cellular biology, 1993. 13(7): p. 4107-4114.
    50. Wu, X., et al., The p53-mdm-2 autoregulatory feedback loop. Genes & development, 1993. 7(7a): p. 1126-1132.
    51. Johnson, D. and C. Walker, Cyclins and cell cycle checkpoints. Annual review of pharmacology and toxicology, 1999. 39(1): p. 295-312.
    52. Lundberg, A. and R. Weinberg, Control of the cell cycle and apoptosis. European Journal of Cancer, 1999. 35(14): p. 1886-1894.
    53. Pavletich, N.P., Mechanisms of cyclin-dependent kinase regulation: structures of cdks, their cyclin activators, and cip and INK4 inhibitors 1, 2. Journal of molecular biology, 1999. 287(5): p. 821-828.
    54. van den Heuvel, S., Cell-cycle regulation. 2005.
    55. Diller, L., et al., p53 functions as a cell cycle control protein in osteosarcomas. Molecular and cellular biology, 1990. 10(11): p. 5772.
    56. Zhang, H., G.J. Hannon, and D. Beach, p21-containing cyclin kinases exist in both active and inactive states. Genes & development, 1994. 8(15): p. 1750-1758.
    57. Nian-Kang, S., et al., Golgi-SNARE GS28 potentiates cisplatin-induced apoptosis by forming GS28-MDM2-p53 complexes and by preventing the ubiquitination and degradation of p53. Biochemical Journal, 2012. 444(2): p. 303-314.
    58. Hubmacher, D., et al., Biogenesis of extracellular microfibrils: Multimerization of the fibrillin-1 C terminus into bead-like structures enables self-assembly. Proceedings of the National Academy of Sciences, 2008. 105(18): p. 6548-6553.
    59. Jensen, S.A., G. Aspinall, and P.A. Handford, C-terminal propeptide is required for fibrillin-1 secretion and blocks premature assembly through linkage to domains cbEGF41-43. Proceedings of the National Academy of Sciences, 2014. 111(28): p. 10155-10160.
    60. Sui, G., et al., Yin Yang 1 is a negative regulator of p53. Cell, 2004. 117(7): p. 859-872.
    61. Beck, K., et al., Interplay between heme oxygenase-1 and the multifunctional transcription factor yin yang 1 in the inhibition of intimal hyperplasia. Circulation research, 2010. 107(12): p. 1490-1497.
    62. Ihling, C., et al., Co‐expression of p53 and MDM2 in human atherosclerosis: implications for the regulation of cellularity of atherosclerotic lesions. The Journal of pathology, 1998. 185(3): p. 303-312.
    63. Kumar, A., et al., p53 impairs endothelial function by transcriptionally repressing Kruppel-Like Factor 2. Arteriosclerosis, thrombosis, and vascular biology, 2011. 31(1): p. 133-141.
    64. Guevara, N.V., et al., The absence of p53 accelerates atherosclerosis by increasing cell proliferation in vivo. Nature medicine, 1999. 5(3): p. 335-339.
    65. Mercer, J., M. Mahmoudi, and M. Bennett, DNA damage, p53, apoptosis and vascular disease. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2007. 621(1): p. 75-86.
    66. Heo, K.-S., et al., PKCζ mediates disturbed flow-induced endothelial apoptosis via p53 SUMOylation. The Journal of cell biology, 2011. 193(5): p. 867-884.
    67. Heo, K.-S., et al., De-SUMOylation Enzyme of Sentrin/SUMO-Specific Protease 2 Regulates Disturbed Flow–Induced SUMOylation of ERK5 and p53 that Leads to Endothelial Dysfunction and Atherosclerosis. Circulation research, 2013. 112(6): p. 911-923.
    68. Zeng, L., et al., The role of p53 deacetylation in p21Waf1 regulation by laminar flow. Journal of Biological Chemistry, 2003. 278(27): p. 24594-24599.
    69. Lin, K., et al., Molecular mechanism of endothelial growth arrest by laminar shear stress. Proceedings of the National Academy of Sciences, 2000. 97(17): p. 9385-9389.
    70. Wang, K.-C., et al., Role of microRNA-23b in flow-regulation of Rb phosphorylation and endothelial cell growth. Proceedings of the National Academy of Sciences, 2010. 107(7): p. 3234-3239.
    71. Austen, M., B. Lüscher, and J.M. Lüscher-Firzlaff, Characterization of the Transcriptional Regulator YY1 THE BIPARTITE TRANSACTIVATION DOMAIN IS INDEPENDENT OF INTERACTION WITH THE TATA BOX-BINDING PROTEIN, TRANSCRIPTION FACTOR IIB, TAFII55, OR cAMP-RESPONSIVE ELEMENT-BINDING PROTEIN (CBP)-BINDING PROTEIN. Journal of Biological Chemistry, 1997. 272(3): p. 1709-1717.
    72. Hsieh, H.-J., et al., Shear-induced endothelial mechanotransduction: the interplay between reactive oxygen species (ROS) and nitric oxide (NO) and the pathophysiological implications. J Biomed Sci, 2014. 21(3).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE