簡易檢索 / 詳目顯示

研究生: 許文諺
Hsu, Wen-Yen
論文名稱: 以閘極工程改善n型鍺金氧半電晶體之電性研究
Improved Electrical Characteristics of Ge nMOSFET by Gate Stack Engineering
指導教授: 張廖貴術
ChangLiao, Kuei-Shu
口試委員: 崔秉鉞
Tsui, Bing-Yue
李耀仁
Lee, Yao-Jen
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2018
畢業學年度: 107
語文別: 中文
論文頁數: 85
中文關鍵詞: n鍺金氧半場效電晶體閘極工程介面工程鍺n+/p接面優化氮化鉿
外文關鍵詞: Ge, Ge nMOSFET, Gate Stack Engineering, Interface Engineering, improve Ge n+/p junction, Hf3N4
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 純鍺基板是下一代金氧半場效電晶體的前瞻通道材料,但還有許多問題需要克服,例如n型鍺電晶體接面形成不易,以及閘極氧化層介面容易產生較多缺陷……等等。因此如何製作一個穩定的接面以及將閘極氧化層介面鈍化相當重要。本論文研究以高品質遮罩氧化層改善鍺n+/p接面,以及探討HfNx、AlN、GeO2介面層對於n型、p型MOS元件介面的影響,最後製作出n型鍺金氧半場效電晶體,並探討其電特性。
    第一部分將介電層二氧化鋯氮化形成氮氧化鋯,探討兩材料對閘極電特性的影響。實驗結果顯示,氮氧化鋯能使電晶體獲得較高的驅動電流,但次臨界擺幅增加。而n+/p接面優化製程,為在離子佈植前利用原子層化學氣相沉積系統(ALD)以電漿形成一層薄二氧化鍺與氧化鋁做為遮罩氧化層,而此氧化層擁有良好的品質也可當作金屬與n+鍺基板邊緣的鈍化層。利用原子層化學氣相沉積系統(ALD)成長一層薄二氧化鍺與沉積氧化鋁做為離子佈植前的遮罩氧化層與表面n+/p接面鈍化層後,得到了很顯著的改善,n+/p接面正偏與逆偏電流比值拉大了105倍。
    第二部分在n、p型基板上分別使用不同介面層,搭配Gate first製程的熱預算450℃300秒。從實驗結果可以看出,p型鍺基板應用HfNx作為介面層的元件有良好的變頻電容特性表現,且EOT(0.57nm)也是所有樣品中最小的,甚至連閘極漏電流都是最小的(Vfb-1V時約為5 x10-4A/cm2)。p型基板沒有使用GeO2作為介面層時Dit是比有使用GeO2作為介面層低的,而n型基板有使用GeO2作為介面層時Dit會比沒有使用GeO2作為介面層表現的好。
    第三部分應用第二部分的結果以HfNx作為介面層。Source/Drain的形成方式也參照本論文第三章,使用ALD沉積的高品質遮罩氧化層與鈍化層優化PN接面。最後n型電晶體的特性,次臨界擺幅為120mV/dec,在ID-VG轉換特性也表現得不錯,on-off ratio達到2 x103。閘極電容EOT為0.67nm,閘極漏電流在Vfb-1V時為8 x10-4A/cm2,Dit約為4×1012 eV-1cm2。


    Germanium (Ge) is regarded as promising channel material for next generation metal oxide semiconductor field effect transistor (MOSFETs). However, there are many challenges for applying Ge as channel material. For example, Ge n+/p junction is hard to be formed, and the interface quality of high-k dielectric is poor. So stable n+/p junction and good passivation of gate dielectric interface are the key technology in Ge nMOSFET. In this thesis, the improved Ge n+/p junction by high quality screen oxide and the effects interfacial layer such as HfNx, AlN, and GeO2 on pGe and nGe MOS device are investigated. Finally, Ge nMOSFETs are fabricated and the electrical characteristic are investigated.
    In the first part, effects of ZrO2 and ZrON high-k gate dielectric electrical characteristic of MOSFET are investigated. Sample with ZrON shows higher drive current, but larger subthreshold swing. On the other hand, GeO2 and Al2O3 as high quality screen oxide before implantation were used to improve Ge n+/p junction. Shallow junction and well passivation of metal/n+Ge interface are obtained by this high quality screen oxide. The performance of n+/p junction are significantly improved, and the on-off ratio is increased to 105 times.
    In the second part, different interfacial layers are used on pGe and nGe MOS device. With gate first process at 450℃ for 300 sec during PMA. The results show that pGe capacitors with HfNx interface layer have good electrical characteristics, showing the lowest gate leakage current density of 5 x10-4A/cm2 and the smallest 0.57nm EOT. The interface trap density of pGe MOS device w/ GeO2 is higher than that of sample w/o GeO2.The interface trap of nGe MOS w/o GeO2 is higher than that of sample w/ GeO2.
    In the third part, HfNx interfacial layer and the source/drain formation as in chapter 3 by using a high quality screen oxide deposited with ALD before implantation were applied to fabricate Ge nMOSFET. Finally, an EOT of 0.67nm, gate leakage current density of 8 x10-4A/cm2, on-off ratio 2 x103 times and subthreshold swing of 120mV/dec are achieved.

    摘要 i Abstract iii 致謝 v 目錄 vii 表目錄 xi 圖目錄 xii 第1章 序論 1 1.1 前言 1 1.2 使用純鍺基板作為載子通道材料 1 1.3 高介電係數(High-K)材料作為閘極氧化層 2 1.4 高介電係數(High-K)材料的選擇 3 1.5 介面層的形成方式 5 1.6 介面缺陷鈍化 6 1.7 n+/p鍺接面優化與漏電流機制 7 1.8 雷射退火的機制 7 1.9 氮化鉿作為p型鍺基板之閘極介面層 8 1.10 論文架構 8 第2章 元件製程與量測 16 2.1 應用氮化鉿為介面層的純鍺基板N-MOSFETs元件製程流程 16 2.1.1. 實驗前晶片清洗 16 2.1.2. ALD電漿搭配前驅物沉積HfNx閘極介面層 17 2.1.3. 金屬閘電極與接觸電極的形成 17 2.1.4. 高品質遮罩氧化層的沉積 17 2.1.5. 源極(Source)、汲極(Drain)、基極(Base)的形成 17 2.1.6. 接出金屬導線、燒結 18 2.2 電性量測 18 2.2.1. 四點量測電流-電壓(I-V)特性 19 2.2.2. 兩點量測電流-電壓(I-V)特性 19 2.2.3. 電容-電壓 (C-V) 特性量測 20 2.3 物性分析 21 2.3.1. X射線光電子能譜儀 21 第3章 n型、p型鍺金氧半場效電晶體製作與高介電層二氧化鋯氮化既鍺n+/p接面優化之研究 22 3.1 研究動機 23 3.2 製程與量測 24 3.2.1. 製程條件 24 3.2.2. 量測參數 25 3.3 實驗結果與分析 26 3.4 結論 28 第4章 不同介面層對不同型態鍺金氧半電容元件特性影響 43 4.1 研究動機 43 4.2 製程與量測 44 4.2.1. 製程條件 44 4.2.2. 量測參數 45 4.3 量測結果與分析 46 4.4 結論 47 第5章 以氮化鉿作為介面層n型鍺金氧半電晶體 60 5.1 研究動機 60 5.2 製程與量測 61 5.2.1. 製程條件 61 5.2.2. 量測參數 62 5.3 實驗結果與分析 64 5.3.1. 以氮化鉿作為介面層n型鍺金氧半電晶體電性結果 64 5.3.2. 以氮化鉿作為介面層n型鍺金氧半電晶體物性結果 66 5.4 結論 67 第6章 結論與未來展望 79 6.1 結論 79 6.2 未來展望 80 參考文獻 82

    [1] C.-H. Fu et al., "Enhanced hole mobility and low Tinv for pMOSFET by a novel epitaxial Si/Ge superlattice channel," IEEE Electron Device Letters, vol. 33, no. 2, pp. 188-190, 2012.
    [2] S. Maikap, M.-H. Lee, S. Chang, and C. Liu, "Characteristics of strained-germanium p-and n-channel field effect transistors on a Si (1 1 1) substrate," semiconductor science and technology, vol. 22, no. 4, p. 342, 2007.
    [3] W. Bai, N. Lu, and D.-L. Kwong, "Si interlayer passivation on germanium MOS capacitors with high-/spl kappa/dielectric and metal gate," IEEE electron device letters, vol. 26, no. 6, pp. 378-380, 2005.
    [4] J. Stathis and D. DiMaria, "Reliability projection for ultra-thin oxides at low voltage," in Electron Devices Meeting, 1998. IEDM'98. Technical Digest., International, 1998, pp. 167-170: IEEE.
    [5] H. S. Momose et al., "Study of the manufacturing feasibility of 1.5-nm direct-tunneling gate oxide MOSFETs: uniformity, reliability, and dopant penetration of the gate oxide," IEEE transactions on electron devices, vol. 45, no. 3, pp. 691-700, 1998.
    [6] J. Robertson, "Electronic behavior of high K oxides," in Solid-State and Integrated Circuits Technology, 2004. Proceedings. 7th International Conference on, 2004, vol. 1, pp. 384-387: IEEE.
    [7] L. Lucci et al., "Quantitative assessment of mobility degradation by remote Coulomb scattering in ultra-thin oxide MOSFETs: Measurements and simulations," in Electron Devices Meeting, 2003. IEDM'03 Technical Digest. IEEE International, 2003, pp. 19.2. 1-19.2. 4: IEEE.
    [8] H. Ota et al., "Intrinsic origin of electron mobility reduction in high-k MOSFETs-from remote phonon to bottom interface dipole scattering," in Electron Devices Meeting, 2007. IEDM 2007. IEEE International, 2007, pp. 65-68: IEEE.
    [9] R. Zhang, T. Iwasaki, N. Taoka, M. Takenaka, and S. Takagi, "High-Mobility Ge pMOSFET With 1-nm EOT Al2O3 /GeOx/Ge Gate Stack Fabricated by Plasma Post Oxidation," IEEE Transactions on Electron Devices, vol. 59, no. 2, pp. 335-341, 2012.
    [10] K. Kita et al., "Comprehensive study of GeO 2 oxidation, GeO desorption and GeO 2-metal interaction-understanding of Ge processing kinetics for perfect interface control," in Electron Devices Meeting (IEDM), 2009 IEEE International, 2009, pp. 1-4: IEEE.
    [11] Y. Fukuda, Y. Yazaki, Y. Otani, T. Sato, H. Toyota, and T. Ono, "Low-Temperature Formation of High-Quality GeO2 Interlayer for High-k Gate Dielectrics/Ge by Electron-Cyclotron-Resonance Plasma Techniques," IEEE Transactions on Electron Devices, vol. 57, no. 1, pp. 282-287, 2010.
    [12] C. Lee et al., "Ge MOSFETs performance: Impact of Ge interface passivation," in Electron Devices Meeting (IEDM), 2010 IEEE International, 2010, pp. 18.1. 1-18.1. 4: IEEE.
    [13] T. Takahashi, T. Nishimura, L. Chen, S. Sakata, K. Kita, and A. Toriumi, "Proof of Ge-interfacing concepts for metal/high-k/Ge CMOS-Ge-intimate material selection and interface conscious process flow," in Electron Devices Meeting, 2007. IEDM 2007. IEEE International, 2007, pp. 697-700: IEEE.
    [14] C. H. Lee, T. Nishimura, K. Nagashio, K. Kita, and A. Toriumi, "High-Electron-Mobility Ge/GeO2 n-MOSFETs With Two-Step Oxidation," IEEE Transactions on Electron Devices, vol. 58, no. 5, pp. 1295-1301, 2011.
    [15] X. Yang et al., "A comparative study of Ge MOSFET using Al2O3/GeOx/Ge stacks-forming high quality GeO x interface layer to boost device performance," in Solid-State and Integrated Circuit Technology (ICSICT), 2014 12th IEEE International Conference on, 2014, pp. 1-3: IEEE.
    [16] W. Zhu and T. Ma, "Temperature dependence of channel mobility in HfO/sub 2/-gated NMOSFETs," IEEE Electron Device Letters, vol. 25, no. 2, pp. 89-91, 2004.
    [17] T. C. Liu, H. Ikegaya, T. Nishimura, and A. Toriumi, "Ge n+/p junctions with high ON-to-OFF current ratio by surface passivation," IEEE Electron Device Letters, vol. 37, no. 7, pp. 847-850, 2016.
    [18] W. Chen, B. Shie, and A. Chin, "Higher gate capacitance Ge n-MOSFETs using laser annealing," IEEE Electron Device Letters, vol. 32, no. 4, pp. 449-451, 2011.
    [19] K. H. Kim, R. G. Gordon, A. Ritenour, and D. A. Antoniadis, "Atomic layer deposition of insulating nitride interfacial layers for germanium metal oxide semiconductor field effect transistors with high-κ oxide/tungsten nitride gate stacks," Applied physics letters, vol. 90, no. 21, p. 212104, 2007.
    [20] J.-H. Wang, "Method for fabricating an ultra-shallow junction with low resistance using a screen oxide formed by poly re-oxidation in a nitrogen containing atmosphere," ed: Google Patents, 2001.
    [21] Y. Wenyu, X. Jingping, L. Lu, H. Yong, and C. Zhixiang, "Improved interfacial and electrical properties of Ge MOS devices with ZrON/GeON dual passivation layer," Journal of Semiconductors, vol. 37, no. 5, p. 054004, 2016.
    [22] N. Taoka, W. Mizubayashi, Y. Morita, S. Migita, H. Ota, and S. Takagi, "Nature of interface traps in Ge metal-insulator-semiconductor structures with GeO2 interfacial layers," Journal of Applied Physics, vol. 109, no. 8, p. 084508, 2011.
    [23] D. Kuzum et al., "High-mobility Ge N-MOSFETs and mobility degradation mechanisms," IEEE Transactions on Electron Devices, vol. 58, no. 1, pp. 59-66, 2011.
    [24] R. Zhang, T. Iwasaki, N. Taoka, M. Takenaka, and S. Takagi, "Impact of GeOx interfacial layer thickness on Al2O3/Ge MOS interface properties," Microelectronic engineering, vol. 88, no. 7, pp. 1533-1536, 2011.
    [25] Y.-L. Chao and J. C. Woo, "Germanium n+/p Diodes: A Dilemma Between Shallow Junction Formation and Reverse Leakage Current Control," IEEE Transactions on Electron Devices, vol. 57, no. 3, pp. 665-670, 2010.

    QR CODE