簡易檢索 / 詳目顯示

研究生: 林柏辰
Lin, Bo-Chen
論文名稱: 具太陽能源及風力永磁同步發電機之直流微電網
ON A DC MICRO-GRID WITH PHOTOVOLTAIC SOURCE AND WIND DRIVEN PERMANENT- MAGNET SYNCHRONOUS GENERATOR
指導教授: 廖聰明
Liaw, Chang-Ming
口試委員: 廖聰明
謝欣然
王醴
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 194
中文關鍵詞: 直流微電網光伏電池永磁同步發電機介面轉換器交錯式切換式整流器鋰離子電池超級電容飛輪變頻器單相三線式最大功率追蹤功因校正電壓控制電流控制數位控制
外文關鍵詞: DC microgrid, photovoltaic cell, permanent-magnet synchronous generator, interface converter, interleaving, switch-mode rectifier, Li-ion battery, supercapacitor, flywheel, inverter, single-phase three-wire, MPPT, power factor correction, voltage control, current control, digital control
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文開發一具光伏電池與風力永磁同步發電機之直流微電網及從事其操作控制,其配有單相三線60Hz 220V/110V變頻器以從事操控性能測試。以所提強健控制使該雙向變頻器具有良好之交流輸出電壓波形,以及切換式整流器交流入電線電流波形。
    光伏電池經由交錯式升壓直流/直流轉換器介接至直流微電網之共通直流鏈,由於交錯式策略使轉換器固有較小之脈寬調變漣波及擴大之額定。另外,運用最大功率點追蹤法,以較有效地萃取光能。至於風力永磁同步發電機,其經由適當設計的維也納三相切換式整流器連接到共通直流鏈,僅使用三個功率開關即可得正弦電樞繞組電流。同時從事一些實測評估,探究換相移位對永磁同步發電機之發電效能影響。
    所建微電網之儲能系統包含鋰離子電池、超級電容及飛輪,每一儲能裝置均經一單臂雙向直流直流轉換器接至共通直流鏈,透過適當之電力電路及控制器設計,獲得良好之充放電性能。根據各裝置之響應特性及容量,由妥善之分配操控可提升微電網之電力品質。當發生長期之再生能源短缺時,可將所建雙向單相三線變頻器操作成一插入式充電器,對這些儲能裝置充電,同時具有良好入電電力品質。
    維也納切換式整流器採用特定之功率模組,其餘三種儲能裝置之介面轉換器及單相三線變頻器係使用兩個三相智慧型功率模組構成。所有組成電力電路之數位控制法則均使用數位訊號處理器實現,並以一些實驗結果驗證所建系統之操控性能。


    This thesis presents the development and operation control of a DC microgrid with photovoltaic (PV) cell and wind permanent-magnet synchronous generator (PMSG). A single-phase three-wire (1P3W) 60Hz 220V/110V load inverter is equipped for making its operation performance test. The robust controls for the developed bidirectional 1P3W inverter are proposed to yield good AC output voltage waveforms and good line drawn current in switch mode rectifier (SMR) operation mode.
    The PV source is interfaced to the common DC bus of microgrid via two interleaving boost DC/DC converters. Smaller PWM ripples and rating enlargement of the established converter are preserved thanks to the interleaving approach. The maximum power point tracking (MPPT) control is also applied to extract the solar energy as effective as possible. As to the wind PMSG, it is connected to the common DC bus through a properly designed Vienna three-phase SMR. Sinusoidal armature winding currents are obtained using only three power switches. The effects of commutation shift on the generating performance of an SPMSM are also studied experimentally.
    The developed microgrid is supported by an energy storage system including a Li-ion battery, a supercapacitor and a flywheel. Each storage device is interfaced to the common DC bus by an one-leg bidirectional DC-DC converter. Good charging and discharging characteristics of each device are achieved through proper schematic and controller designs. And the effective use of energy storage to improve the microgrid power quality can be obtained by properly dispatching these storage devices according to their response characteristics and capacities. Moreover, the charges of these devices can be made via the plug-in a charger formed by the 1P3W inverter from mains for the occurrence of long-term renewable energy exhaustion.
    While the Vienna SMR is implemented employing a specific power module, all other constituted interface converters of PV source, energy storage devices and 1P3W inverter are constructed using two three-phase intelligent power modules. The digital control algorithms of all power stages are realized using digital signal processor (DSP). Some experimental results are provided to demonstrate their performances.

    ACKNOWLEDGEMENT.........................................i ABSTRACT...............................................ii LIST OF CONTENTS......................................iii LIST OF FIGURES.......................................vii LIST OF TABLES......................................xviii CHAPTER 1 INTRODUCTION..................................1 CHAPTER 2 INTRODUCTION TO MICRO-GRID, PERMANENT- MAGNET SYNCHRONOUS GENERATOR AND INTERFACTING POWER CONVERTERS.6 2.1 Introduction....................................6 2.2 Typical Micro-Grid Systems......................6 2.3 Distributed and Renewable Sources...............9 2.4 Permanent-Magnet Synchronous Generators........12 2.4.1 Governing Equations......................12 2.4.2 Estimation of Equivalent Circuit Parameters .........................................18 2.5 Source Interface Power Converters for Wind Generators.............................................22 2.6 Energy Storage Devices.........................24 2.7 Some Interfacing DC-DC Converters of Micro-Gird System ...............................................25 2.8 Inverters for Micro-Grid System................27 2.9 PWM Inverters..................................27 2.9.1 Single-Phase Sinusoidal PWM Inverters....27 2.9.2 Three-Phase SPWM Inverters...............29 2.10 Switch-Mode Rectifiers.........................31 2.11 System Configuration of The Developed Micro-Grid ...............................................32 CHAPTER 3 A WIND PERMANENT-MAGNET SYNCHRONOUS GENERATOR WITH VIENNA SWITCH-MODE RECTIFIER AS INTERFACE CONVERTER ...............................................35 3.1 Introduction...................................35 3.2 Basics of Digital Control......................36 3.3 The Established Wind Permanent-Magnet Synchronous Generator..............................................38 3.4 Vienna Switch-Mode Rectifier...................40 3.4.1 Design of Circuit Components.............44 3.4.2 Control Scheme...........................52 3.4.3 Simulated Results........................53 3.4.4 Measured Results of the Established Vienna SMR......................................58 3.5 Experimental Evaluation of the Established Wind PMSG under Varying Driving Speeds, Loads and Commutation Shift ...............................................62 CHAPTER 4 ESTABLISHMENT OF DC/DC INTERFACE CONVERTER FOR PV CELL............................................75 4.1 Introduction...................................75 4.2 PV System Operation Principles.................75 4.2.1 PV Materials.............................75 4.2.2 PV Array Equivalent Circuit Model........76 4.2.3 Characteristics of PV Panels in Series and Parallel Connections.....................80 4.2.4 Measured Characteristic Curves of PV Simulator .........................................85 4.2.5 Maximum Power Point Tracking.............86 4.3 Some Existing DC-DC Converters.................86 4.4 Development of Interleaving DC-DC Boost Converter ...............................................92 4.4.1 Power Circuit............................95 4.4.2 Control Scheme...........................98 4.5 Performance Evaluation for the Established Interleaving DC/DC Boost Converter.............99 4.5.1 Simulated Results........................99 4.5.2 Measured Results........................102 CHAPTER 5 ENERGY STORAGE SYSTEM.......................105 5.1 Introduction..................................105 5.2 Some Energy Storage Devices...................106 5.2.1 Li-ion Battery..........................106 5.2.2 Super-capacitor.........................107 5.2.3 Hybrid Storage System Consisting of Battery and Supercapacitor......................108 5.2.4 Flywheel................................111 5.3 The Established Energy Storage System.........111 5.3.1 Specifications of Energy Storage Devices ..............................................111 5.3.2 Power Circuit...........................113 5.3.3 Control Schemes.........................118 5.4 Experimental Results..........................120 5.4.1 Charging Mode Operations of Battery and Supercapacitor Banks....................120 5.4.2 Discharging Mode of Battery Bank........123 5.4.3 Discharging Mode of PMSM-driven Flywheel ..............................................125 CHAPTER 6 SINGLE-PHASE THREE-WIRE BIDIRECTIONAL LOAD INVERTER..............................................129 6.1 Introduction..................................129 6.2 Some Possible Single-Phase Three-Wire Inverters ..............................................129 6.3 The Developed Single-Phase Three-Wire Bidirectional Load Inverter.........................................131 6.3.1 System Configuration....................131 6.3.2 Control Schemes.........................135 6.4 Simulated and Experimental and Results........137 6.4.1 Simulated Results.......................139 6.4.2 Measured Results........................146 CHAPTER 7 PERFORMANCE ASSESSMENT FOR WHOLE DC MICRO- GRID SYSTEM................................................153 7.1 Introduction..................................153 7.2 System Configuration of the Established DC Micro-Grid System...........................................153 7.3 Experimental Evaluation of the Whole Micro-Grid ..............................................161 7.4 Interconnected Operations of the Developed Micro-grid to Other Micro-grid and Energy Systems...........172 CHAPTER 8 CONCLUSIONS.................................186 REFERENCES............................................188

    A. Distributed Power Systems and Microgrid
    [1] H. Kakigano, Y. Miura, T. Ise and R. Uchida, “DC Micro-grid for super high quality distribution-system configuration and control of distributed generations and energy storage devices,” in Proc. IEEE PESC., pp. 1-7, 2006.
    [2] F. Blaabjerg, F. Iov, R. Teodorescu and Z. Chen, “Power electronics in renewable energy systems,” in Proc. IEEE EPE-PEMC, 2006, pp. 1-17.
    [3] N. Hatziargyriou, H. Asano, R. Iravani and C. Marnay, “Microgids,” IEEE Power Energy, vol. 5, no. 4, pp. 78-94, 2007.
    [4] H. Kakigano, Y. Miura, T. Ise and R. Uchida, “DC voltage control of the DC micro-grid for super high quality distribution,” in Proc. IEEE PCCON., pp. 518-525, 2007.
    [5] H. Hakigano, Y. Miura and T. Ise, “Configuration and control of a DC microgrid for residential houses,” in Proc. IEEE T&D Asia, pp. 1-4, 2009.
    [6] S. Chakraborty and M. G. Simoes, “Experimental evaluation of active filtering in a single-phase high-frequency AC microgrid,” IEEE Trans. Energy Convers., vol. 24, no. 3, pp. 673-682, 2009.
    [7] R. Majumder, A. Ghosh, G. Ledwich and F. Zare, “Power management and power flow control with back-to-back converters in a utility connected microgrid,” IEEE Trans. Power Syst., vol. 25, no. 2, pp. 821-834, 2010.
    [8] Y. C. Chang and C. M. Liaw, “Establishment of a switched-reluctance generator-based common DC microgrid system,” IEEE Trans. Power Electron., vol. 26, no. 9, pp. 2512-2527, 2011.
    [9] M. A. Tavakkoli, A. Radan and H. Hassibi, “Investigation of electronic infrastructure of a compact micro grid with DC common bus for utilizing multiple renewable energy sources,” in Proc. Int. Conf. Renewable Energy and Distributed Generation, 2012, pp. 110-115.
    [10] Q. Fu, A. Solanki, L. F. Montoya, A. Nasiri, V. Bhavaraju, T. Abdallah and D. Yu, “Generation capacity design for a microgrid for measurable power quality indexes,” in Proc. IEEE PESC., pp. 1-6, 2012.
    B. Permanent-Magnet Synchronous Generator
    [11] I. Schiemenz and M. Stiebler, “Control of a permanent magnet synchronous generator used in a variable speed wind energy system,” in Proc. IEEE IEMDC., pp. 872-877, 2001.
    [12] K. Amei, Y. Takayasu, T. Ohji and M. Sakui, “A maximum power control of wind generator system using a permanent magnet synchronous generator and a boost chopper circuit,” in Proc. IEEE PCC., pp. 1447-1452, 2002.
    [13] N. Srighakollapu and P. S. Sensarma, “Sensorless maximum power point tracking control in wind energy generation using permanent magnet synchronous generator,” in Proc. IEEE IECON., pp.2225-2230, 2008.
    [14] G. Foo and M. F. Rahman, “Sensorless adaptive sliding mode control of an IPM synchronous motor drive using a sliding mode observer and HF signal injection,” in Proc. IEEE EPE., pp. 1-11, 2009.
    [15] M. Heydari, A. Y. Varjani, M. Mohamadian and H. Zahedi, “A novel variable-speed wind energy system using permanent-magnet synchronous generator and nine-switch AC/AC converter,” in Proc. IEEE PEDSTC., pp. 5-9, 2010.
    C. Switch-mode Rectifiers
    [16] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey and D. P. Kothari, “A review of single-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 962-981, 2003.
    [17] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey and D. P. Kothari, “A review of three-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, 2004.
    [18] J. Y. Chai, Y. C. Chang and C. M. Liaw, “On the switched-peluctance motor drive with three-phase single-switch switch-mode rectifier front-end,” IEEE Trans. Power Electron., vol. 25, no. 5, pp. 1135-1148, 2010.
    [19] H. Chen and D. C. Aliprantis, “Induction generator with Vienna rectifier: feasibility study for wind power generation,” in Proc. IEEE ICEM, 2010, pp. 1-6.
    [20] J. Minibock and J. W. Kolar, “Novel concept for mains voltage proportional input current shaping of a VIENNA rectifier eliminating controller multipliers,” IEEE Trans. Ind. Electron., vol. 52, no. 1, pp. 162-170, 2005.
    [21] N. B. H. Youssef, K. Al-Haddad and H. Y. Kanaan, “Real-time implementation of a discrete nonlinearity compensating multiloops control technique for a 1.5-kW three-phase/switch/level Vienna converter,” IEEE Trans. Ind. Electron., vol. 55, no. 3, pp. 1225-1234, 2008.
    [22] N. B. H. Youssef, K. Al-Haddad and H. Y. Kanaan, “Large-signal modeling and steady-state analysis of a 1.5-kW three-phase/switch/level (Vienna) rectifier with experimental validation,” IEEE Trans. Ind. Electron., vol. 55, no. 3, pp. 1213-1224, 2008.
    [23] N. B. H. Youssef, K. Al-Haddad and H. Y. Kanaan, “Implementation of a new linear control technique based on experimentally validated small-signal model of three-phase three-level boost-type Vienna rectifier,” IEEE Trans. Ind. Electron., vol. 55, no. 4, pp. 1666-1676, 2008.
    [24] N. Bel Hadj-Youssef, K. Al-Haddad, H.Y. Kanaan and F. Fnaiech, “Small-signal perturbation technique used for DSP-based identification of a three-phase three-level boost-type Vienna rectifier,” IET Electric Power Appl., vol. 1, no. 2, pp. 199-208, 2007.
    [25] C. H. Yeh, “DSP-based inverter systems with three-phase switch-mode rectifier front-end.” Master Thesis, Department of Electrical Engineering, National Tsing Hua Univ., Hsinchu, ROC., 2009.
    [26] S. H. Li and C. M. Liaw, “Development of three-phase switch mode rectifier using single-phase modules,” IEEE Trans. Aerosp. Electron. Syst., vol. 40, no. 1, pp. 70-79, 2004.
    D. Related Technologies of Photovoltaic Technologies
    [27] T. Kerekes, R. Teodorescu, M. Liserre, R. Mastromauro, and A. Dell’Aquila, “MPPT algorithm for voltage controlled PV inverters,” in Proc. IEEE OPTIM, 2008, pp. 427-432.
    [28] R. Kadri, J. P. Gaubert and G. Champenois, “An improved maximum power point tracking for photovoltaic grid-connected inverter based on voltage-oriented control,” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 66-75, 2011.
    [29] C. Meza, D. Biel, J. Negroni and F. Guinjoan, “Boost-buck inverter variable structure control for grid-connected photovoltaic systems with sensorless MPPT,” in Proc. IEEE Int. Ind. Electron., vol. 2, pp. 657-662, 2005.
    [30] H. Patel and V. Agarwal, “MPPT scheme for a PV-fed single-phase singlestage grid-connected inverter operating in CCM with only one current sensor,” IEEE Trans. Energy Convers., vol. 24, no. 1, pp. 256-263, 2009.
    [31] N. Mutoh, M. Ohno, and T. Inoue, “A method for MPPT control while searching for parameters corresponding to weather conditions for PV generation systems,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1055-1065, 2006.
    [32] N. Femia, G. Petrone, G. Spagnuolo and M. Vitelli, “Optimizing sampling rate of P&O MPPT technique,” in PESC, 2004, vol. 3, pp. 20-25.
    [33] N. Mutoh, M. Ohno and T. Inoue, “A method for MPPT control while searching for parameters corresponding to weather conditions for PV generation systems,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1055-1065, 2006.
    [34] I. Abdalla, L. Zhang and J. Corda, “Voltage-hold perturbation & observation maximum power point tracking algorithm (VH-P&O MPPT) for improved tracking over the transient atmospheric changes,” in Proc. European Conf. EPE., pp. 1-10, 2011.
    [35] G. Petrone, G. Spagnuolo and M. Vitelli, “A multivariable perturb-and-observe maximum power point tracking technique applied to a single-stage photovoltaic inverter”, IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 76-84, 2011.
    [36] A. Burgio, D. Menniti, A. Pinnarelli, N. Sorrentino and G. Brusco, “An incremental conductance method with variable step size for MPPT: design and implementation,” in Proc. Int. Conf. Electrical Power Quality and Utilisation, 2009, pp. 1-5.
    [37] A. Kalantari, A. Rahmati and A. Abrishamifar, “A faster maximum power point tracker using peak current control,” in Proc. IEEE ISIEA, 2009, pp. 117-121.
    [38] R. Faranda, S. Leva, and V. Maugeri, “MPPT techniques for PV systems: energetic and cost comparison,” in Proc. IEEE PESGM, 2008, pp. 1-6.
    E. DC/DC Converters and Front-End Converters
    [39] I. Sefa and S. Ozdemir, “Multifunctional interleaved boost converter for PV systems,” in Proc. IEEE ISIE, pp. 951-956, 2010.
    [40] I. Cervantes, A. Mendoza-Torres, A. R. Garcia-Cuevas and F. J. Perez-Pinal, “Switched control of interleaved converters,” in Proc. IEEE VPPC, pp. 1156-1161, 2009.
    [41] R. Gules, L. L. Pfitscher and L. C. Franco, “An interleaved boost DC-DC converter with large conversion ratio,” in Proc. IEEE ISIE, pp. 411-416, 2003.
    [42] A. S. Samosir, M. Anwari and A. H. M. Yatim, “Dynamic evolution control of interleaved boost DC-DC converter for fuel cell application,” in Proc. IEEE IPEC., pp. 869-874, 2010.
    [43] H. Kosai, S. Mcneal, B. Jordan, J. Scofield, B. Ray and Z. Turgut, “Coupled inductor characterization for a high performance interleaved boost converter,” IEEE Trans. Magn., vol. 45, no. 10, pp. 4812-4815, 2009.
    [44] F. Caricchi, F. Crescimbini and A. D. Napoli, “20kW water-cooled prototype of a buck-boost bidirectional DC-DC converter topology for electrical vehicle motor drives,” in Proc. IEEE APEC., pp. 887-892, 1995.
    [45] M. Jain, P. K. Jain and M. Daniele, “Analysis of a bi-directional DC-DC converter topology for low power application,” in Proc. IEEE CCECE., vol.2, pp. 548-551, 1997.
    [46] F. Caricchi, F. crescimbini, F. G. Capponi and L. Solero, “Study of bi-directional buck-boost converter topologies for application in electrical vehicle motor drives,” in Proc. IEEE APEC, vol. 1, pp. 287-293, 1998.
    [47] M. Cacciato, F. Caricchi, F. Giuhlii and E. Santini, “A critical evaluation and design of bi-directional DC/DC converters for super-capacitors interfacing in fuel cell applications,” in Proc. IEEE IAS, vol. 2, no.2, pp. 1127-1133, 2004.
    [48] K. P. Yalamanchili and M. Ferdowsi, “Review of multiple input DC-DC converters for electric and hybrid vehicles,” in Proc. IEEE VPPC, pp. 552-555, 2005,.

    [49] C. Zhao, S. D. Round and J. W. Kolar, “An isolated three-port bidirectional DC-DC converter with decoupled power flow management,” IEEE Trans. Power Electron., vol. 23, no. 5, pp. 2443-2453, 2008.
    [50] H. C. Chang and C. M. Liaw, “On the front-end converter and its control for a battery powered switched-reluctance motor drive,” IEEE Trans. Power Electron., vol. 23, no. 4, pp. 2143-2156, 2008.
    [51] L. Palma and P. N. Enjeti, “A modular fuel cell, modular DC-DC converter concept for high performance and enhance reliability,” IEEE Trans. Power Electron., vol. 24, no. 6, pp. 1437-1443, 2009.
    [52] Z. Qian, O. Abdel-Rahman and I. Batarseh, “An integrated four-port DC/DC converter for renewable energy applications,” IEEE Trans. Power Electron., vol. 25, no. 7, pp. 1877-1887, 2010.
    F. Energy Storage Systems
    [53] C. M. Liaw, T. H. Chen, S. J. Chiang, C. M. Lee and C. T. Wang, “Small battery storage system,” Proc. Inst. Elect. Eng., vol. 140, pt. B, no. 1, pp. 7-17, 1993.
    [54] J. Cao and A. Emadi, “Batteries needs electronics,” IEEE. Ind. Electron. Mag., vol. 5, no. 1, pp. 27-35, 2011.
    [55] R. Yokoyama, Y. Hida, K. Koyanagi and K. Iba, “The role of battery systems and expandable distribution networks for smarter grid,” in Proc. IEEE PESGM., pp. 1-6, 2011.
    [56] T. A. Nergaard, J. F. Ferrell, L. G. Leslie and J. S. Lai, “Design considerations for a 48V fuel cell to split single phase inverter system with ultracapacitor energy storage,” in Proc. IEEE PESC., pp. 2007-2012, 2002.
    [57] L. Gao, R. A. Dougal and S. Liu, “Power enhancement of an actively controlled battery/ultracapacitor hybrid,” IEEE Trans. Power Electron., vol. 20, no. 1, pp. 236-243, 2005.
    [58] A. W. Stienecker, T. Stuart and C. Ashtiani, “A combined ultracapacitor-lead acid battery storage system for mild hybrid electric vehicles,” in Proc. IEEE VPPC., pp. 350-355, 2005.
    [59] M. Ortuzar, J. Moreno and J. Dixon, “Ultracapacitor-based auxiliary energy system for an electric vehicle: implementation and evaluation,” IEEE Trans. Ind. Electron., vol. 54, no. 4, pp. 2147-2156, 2007.
    [60] J. Bauman and M. Kazerani, “A comparative study of fuel-cell-battery, fuel-cell-ultracapacitor, and fuel-cell-battery-ultracapacitor vehicles,” IEEE Trans. Veh. Technol., vol. 57, no. 2, pp. 760-769, 2008.
    [61] L. Zhihao, O. Onar, A. Khaligh and E. Schaltz, “Design and control of a multiple input DC/DC converter for battery/ultra-capacitor based electric vehicle power system,” in Proc. IEEE APEC., pp. 591-596, 2009.
    [62] A. Abedini and A. Nasiri, “Applications of super capacitors for PMSG wind turbine power smoothing,” in Proc. IEEE IECON., pp. 3347-3351, 2008.
    [63] R. Cardenas, R. Pena, M. Perez, J. Clare, G. Asher and P. Wheeler, “Power smoothing using a flywheel driven by a switched reluctance machine,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1086-1093, 2006.
    [64] Jr. R. Andrade, G. G. Sotelo, A. C. Ferreira, L. G. B. Rolim, J. L. S. Neto, R. M. Stephan, W. I. Suemitsu and R. Nicolsky, “Flywheel energy storage system description and tests,” IEEE Trans. Ind. Electron., vol. 17, no. 2, pp. 2154-2157, 2007.
    [65] R. Pena-Alzola, R. Sebastian, J. Quesada and A. Colmenar, “Review of flywheel based energy storage system,” in Proc. Int. Conf. Power Engineering Energy and Electrical Drives, 2011, pp.1-6.
    G. Inverters and PWM Switching Methods
    [66] N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics: Converters, Applications and Design, 1st ed., New York: John Wiley & Sons Ltd, 2003.
    [67] X. Yaosuo, C. Liuchen and S. Pinggang, “Recent developments in topologies of single-phase buck-boost inverters for small distributed power generators: an overview,” in Proc. IPEMC., vol. 3, pp. 1118-1123, 2004.
    [68] B. S. Prasad, S. Jain and V. Agarwal, “Universal single-stage grid-connected inverter,” IEEE Trans. Energy Convers., vol. 23, no. 1, pp. 128-137, 2008.
    [69] S. J. Chiang and C. M. Liaw, “Single-phase three-wire transformerless inverter,” IEE Proc. Electr. Power Appl., vol. 141, no. 4, pp. 197-205, 1994.
    [70] H. Patel and V. Agarwal, “A single-stage single-phase transformer-less doubly grounded grid-connected PV interface,” IEEE Trans. Energy Convers., vol. 24, no. 1, pp. 93-101, 2009.
    [71] R. Gonzalez, E. Gubia, J. Lopez and L. Marroyo, “Transformerless single-phase multilevel-based photovoltaic inverter,” IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2694-2702, 2008.
    [72] R. González, J. López, P. Sanchis and L. Marroyo, “Transformerless inverter for single-phase photovoltaic systems,” IEEE Trans. Power Electron., vol. 22, no. 2, pp. 693-697, 2007.
    [73] C. M. Liaw, W. C. Yu and T. H. Chen, “Random vibration test control of inverter-fed electrodynamic shaker,” IEEE Trans. Ind. Electron., vol. 49, no. 3, pp. 587-594, 2002.
    [74] M. Ciobotaru, R. Teodorescu and F. Blaabjerg, “Control of single-stage single-phase PV inverter,” in Proc. EPE., pp. 1-10, 2005.
    [75] N. M. Abdel-Rahim and J. E. Quaicoe, “Analysis and design of a multiple feedback loop control strategy for single-phase voltage-source UPS inverters,” IEEE Trans. Power Electron., vol. 11, no. 4, pp. 532-541, 1996.
    [76] R. A. Mastromauro, M. Liserre and A. Dell'Aquila, “Study of the effects of inductor nonlinear behavior on the performance of current controllers for single-phase PV grid converters,” IEEE Trans. Ind. Electron., vol. 55, no. 5, pp. 2043-2052, 2008.
    [77] M. Castilla, J. Miret, J. Matas, L. G. de Vicuña and J. M. Guerrero, “Linear current control scheme with series resonant harmonic compensator for single-phase grid-connected photovoltaic inverters” IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2724-2733, 2008.
    H. Others
    [78] “Digital signal controller TMS320F28335 datasheet,” http://www.ti.com/lit/gpn /tms320f28335

    [79] “Mitsubishi semiconductor CM100RL-12NF datasheet,” http://www.mitsubishichips.
    com/Global/content/product/power/powermod/igbtmod/nf/cm100rl-12nf_e.pdf

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE