簡易檢索 / 詳目顯示

研究生: 黃振維
Huang, Chen-Wei
論文名稱: 利用變溫拉曼光譜技術研究鈷與鎳的直線型三核金屬串錯合物的電子與振動結構
Study of the Electronic and Vibration Structures of Linear Trinuclear Metal-String Complexes of Cobalt and Nickel by Using Temperature-Controlled Raman Spectroscopy
指導教授: 陳益佳
Chen, I-Chia
口試委員: 蔡易州
Tsai, Yi-Chou
劉靜萍
Liu, Ching-Ping
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 112
中文關鍵詞: 拉曼金屬串變溫
外文關鍵詞: Raman, metal-string, temperature-controlled
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究為使用變溫裝置偵測鈷與鎳的直線型三核金屬串錯合物M3(dpa)4Cl2 (dpa = di(2-pyridyl)amide,M = Co、Ni) 的晶體拉曼光譜,搭配密度泛函理論 (Density functional theory, DFT) 的計算,指認金屬串錯合物的分子結構、振動模式以及電子能階。由於Co3(dpa)4Cl2在結晶時會受到與其共結晶溶劑二氯甲烷影響,會形成對稱與不對稱兩種構型,我們分別對這兩種結構進行變溫以及外加磁場的實驗。由拉曼光譜在不同溫度的變化,我們認為對稱的構型在77~623 K的溫度範圍內應有三個不同結構。已知s-Co3(dpa)4Cl2的基態為雙重態,並有一個與基態能量及結構非常接近的雙重態,且它與基態可能互為簡併態。當溫度升至423 K附近會轉成六重態,最後在623 K時再抵達另一個電子能階。至於不對稱的構型在此溫度範圍內也有三個不同結構,它的基態也是雙重態,當溫度升至373 K附近它會再轉變至另一個四重態,最後在573 K時抵達新的較高能量之電子能階。我們也發現對稱的623 K與不對稱的573 K之能階擁有類似的拉曼光譜,它們可能為同一個電子能階。並藉由變溫拉曼觀察Ni3(dpa)4Cl2單態與五重態的能階轉變,發現它們拉曼光譜只有鎳與氯的伸縮振動之譜帶差異。偵測[Ni3(dpa)4Cl2]-的表面增強拉曼 (suface enhanced Raman scattering,SERS) 光譜,並且藉由比對理論計算指認其電子能階在溫度上升時,由四重態轉至雙重態,並且更正本實驗室先前的指認,把242 cm-1的振動模式更新指認為[Ni3(dpa)4Cl2]-之鎳與氯的伸縮振動。 


    We used temperature-controlled Raman setup to detect the Raman spectra of the linear trinuclear metal-string complexes M3(dpa)4Cl2 (dpa = di (2-pyridyl) amide, M = Co, Ni). With the calculations of density functional theory (DFT), the molecular structures, vibrational modes and electronic energy levels of the metal-string complexes were assigned. Co3(dpa)4Cl2 exhibits symmetric and asymmetric forms (s-form and u-form) of Co−Co metal bonding, which were formed depending on temperature and solvent. We conducted the temperature-changed and external magnetic field experiments on these two forms. We found that the s-form has three different structures in the temperature range of 77 − 623 K. The ground state was doublet, and it had another doublet state lying close to the ground state, which might be a degenerate state for the ground state. When the temperature rose to 423 K, it turned into a sextet state, and finally reached another electronic level at 623 K. As for the u-form, there are also three different structures in the same temperature range. The ground state was also doublet. When the temperature rose to 373 K, it turned into a quartet state, and finally reached a new electronic energy level at 573 K. We found that the electronic energy level of the third state of s-form and u-form generated at high temperature, have similar Raman spectra implying the same electronic energy level. For Ni3(dpa)4Cl2, the transition from the singlet to the quintet state was observed by using temperature-controlled Raman spectrometer. We found the only difference between two states is the position of Ni−Cl stretching band. The surface-enhanced Raman scattering (SERS) technique was used to detect [Ni3(dpa)4Cl2]-. The transition from the quartet to the double state was assigned by comparing with the result of the DFT calculations. Finally, the band of 242 cm-1 is reassigned to the Ni−Cl stretching in the [Ni3(dpa)4Cl2]- SERS spectrum.

    第一章 序論 1 1.1金屬串錯合物簡介 1 1.2三核金屬串錯合物的金屬鍵結理論 1 1.3 Co3(dpa)4Cl2之物理性質 8 1.4 Ni3(dpa)4Cl2之物理性質 16 1.5 研究動機 19 第二章 實驗方法 22 2.1 拉曼光譜的光路架設 22 2.1.1 雷射光源 22 2.1.2 變溫樣品台 23 2.1.3 分光系統 23 2.1.4 偵測系統 24 2.2 超低頻拉曼光譜學 24 2.3 還原拉曼光譜 25 2.4 晶體的固態拉曼測量 26 2.5 表面增強拉曼光譜測量 26 2.6 奈米金球溶液製備 27 2.7 高解析的晶體拉曼測量 27 2.8 理論計算 27 第三章 鈷金屬串錯合物 29 3.1 Co3(dpa)4Cl2的振動光譜 29 3.2 s-Co3(dpa)4Cl2的實驗結果 30 3.2.1 超低頻區間 30 3.2.2 變溫光譜的指認 32 3.2.3 磁場的影響 33 3.2.4 呼吸模式的分析 34 3.2.5 s-Co3(dpa)4Cl2的電子態指認 35 3.3 u-Co3(dpa)4Cl2的實驗結果 38 3.3.1 變溫光譜的指認 38 3.3.2磁場的影響 39 3.3.3 u-Co3(dpa)4Cl2的電子態指認 40 3.4 高溫的Co3(dpa)4Cl2 42 3.5 結論-鈷金屬串錯合物 92 第四章 鎳金屬串錯合物 95 4.1 Ni3(dpa)4Cl2 95 4.2 [Ni3(dpa)4Cl2]- 97 4.3 結論-鎳金屬串錯合物 106 第五章 總結 108

    1. Hurley, T. J. R., M. A., Nickel(2)-2,2' -Bipyridylamine System .1. Synthesis and Stereochemistry of Complexes. Inorg Chem 1968, 7, 33-&.
    2. Aduldecha, S. H., B., Crystal structure and electronic properties of tetrakis[µ3-bis(2-pyridyl)amido]dichlorotrinickel(II)–water–acetone (1/0.23/0.5). J Chem Soc Dalton 1991, 993-998.
    3. Pyrka, G. J. E.-M., M.; Pinkerton, A. A., Structure of the linear trinuclear copper complex, dichlorotetrakis-(di-2-pyridylamido)tricopper. J. Chem. Soc., Chem. Commun. 1991, 84.
    4. Cle´rac, R. C., F. A.; Dunbar, K. R.; Murillo, C. A.; Pascual, I.; Wang, X., Further Study of the Linear Trinickel(II) Complex of Dipyridylamide. Inorg. Chem. 1999, 38, 2655-2657.
    5. Yang, E. C.; Cheng, M. C.; Tsai, M. S.; Peng, S. M., Structure of a Linear Unsymmetrical Trinuclear Cobalt(Ii) Complex with a Localized Co-Ii Co-Iii Bond - Dichlorotetrakis[Mu(3)-Bis(2-Pyridyl)Amido]Tricobalt(Ii). J Chem Soc Chem Comm 1994, (20), 2377-2378.
    6. Cotton, F. A.; Daniels, L. M.; Murillo, C. A.; Pascual, I., Compounds with linear, bonded trichromium chains. J Am Chem Soc 1997, 119 (42), 10223-10224.
    7. Sheu, J. T.; Lin, C. C.; Chao, I.; Wang, C. C.; Peng, S. M., Linear trinuclear three-centred metal-metal multiple bonds: Synthesis and crystal structure of [M(3)(dpa)(4)Cl-2] [M=Ru-II or Rh-II, dpa=bis(2-pyridyl)amido anion]. Chem Commun 1996, (3), 315-316.
    8. Peng, S. M. W., C. C.; Jang, Y. L.; Chen, Y. H.; Li, F. Y.; Mou, C. Y.; Leung, M. K., One-Dimensional Metal String Complexes. . J Magn Magn Mater 2000, 209, 80-83.
    9. Kitagawa, Y.; Matsui, T.; Nakanishi, Y.; Shigeta, Y.; Kawakami, T.; Okumura, M.; Yamaguchi, K., Theoretical studies of electronic structures, magnetic properties and electron conductivities of one-dimensional Ni-n (n=3, 5, 7) complexes. Dalton T 2013, 42 (45), 16200-16208.
    10. 謝明勳, 國立台灣大學碩士論文. 九十學年度.
    11. Berry, J. F.; Cotton, F. A.; Daniels, L. M.; Murillo, C. A.; Wang, X. P., Oxidation of Ni-3(dpa)(4)Cl-2 and Cu-3(dpa)(4)Cl-2: Nickel-nickel bonding interaction, but no copper-copper bonds. Inorg Chem 2003, 42 (7), 2418-2427.
    12. Clerac, R.; Cotton, F. A.; Daniels, L. M.; Dunbar, K. R.; Murillo, C. A.; Wang, X. P., Tuning the metal-metal bonds in the linear tricobalt compound Co-3(dpa)(4)Cl-2: Bond-stretch and spin-state isomers. Inorg Chem 2001, 40 (6), 1256-1264.
    13. Cle´rac, R. C., F. A.; Daniel, L. M.; Dumbar, K. R. , Linear Tricobalt Compounds with Di(2-pyridyl)amide (dpa) Ligands: Temperature Dependence of the Structural and Magnetic Properties of Symmetrical and Unsymmetrical Forms of Co3(dpa)4Cl2 in the Solid State. J. Am. Chem. Soc. 2000, 122, 6226-6236.
    14. Pantazis, D. A.; McGrady, J. E., A three-state model for the polymorphism in linear tricobalt compounds. J Am Chem Soc 2006, 128 (12), 4128-4135.
    15. Kiehl, P. R., M. M.; Benard, M., Electron Delocalization in Nickel Metallic Wires: A Dft Investigation of Ni-3(Dpa)(4)Cl-2 and [Ni-3(Dpa)(4)](3+) (Dpa = Dipyridylamide) and Extension to Higher Nuclearity Chains. Inorg Chem 2004, 43, 3151-3158.
    16. Wang, C. C. L., W. C.; Chou, C. C.; Lee, G. H.; Chen, J. M.; Peng, S. M., Synthesis, Crystal Structures, and Magnetic Properties of a Series of Linear Pentanickel(Ii) Complexes: [Ni-5(Mu(5)-Tpda)(4)X-2] (X = Cl-, Cn-, N-3(-), Ncs-) and [Ni-5(Mu(5)-Tpda)(4)(Ch3cn)(2)]-(Pf6)(2) (Tpda(2-) = the Tripyridyldiamido Dianion). Inorg Chem 1998, 37, 4059-4065.
    17. 吳柏漢, 國立清華大學博士論文. 一百零七學年度.
    18. 蕭忠仁, 國立清華大學碩士論文. 九十六學年度.
    19. Larkin, P. J.; Dabros, M.; Sarsfield, B.; Chan, E.; Carriere, J. T.; Smith, B. C., Polymorph Characterization of Active Pharmaceutical Ingredients (APIs) Using Low-Frequency Raman Spectroscopy. Appl Spectrosc 2014, 68 (7), 758-776.
    20. Shuker, R.; Gammon, R. W., Raman-Scattering Selection-Rule Breaking and Density of States in Amorphous Materials. Phys Rev Lett 1970, 25 (4), 222-&.
    21. Shigeto, S.; Chang, C. F.; Hiramatsu, H., Directly Probing Intermolecular Structural Change of a Core Fragment of beta(2)-Microglobulin Amyloid Fibrils with Low-Frequency Raman Spectroscopy. J Phys Chem B 2017, 121 (3), 490-496.
    22. Iwata, K.; Okajima, H.; Saha, S.; Hamaguchi, H. O., Local structure formation in alkyl-imidazolium-based ionic liquids as revealed by linear and nonlinear Raman spectroscopy. Accounts Chem Res 2007, 40 (11), 1174-1181.
    23. Long, N. N. V., L. V.; Kiem, C. D.; Doanh, S. C.; Nguyet, C. T.; Hang, P. T.; Thien, N. D.; Quynh, L. M., Synthesis and optical properties of colloidal gold nanoparticles J. Phys.: Conf. Ser. 2009, 187, 012026.
    24. Grimme, S.; Ehrlich, S.; Goerigk, L., Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J Comput Chem 2011, 32 (7), 1456-1465.
    25. 陳偉豪, 國立清華大學碩士論文. 一百零八學年度.
    26. Zhang, F.; Kambara, O.; Tominaga, K.; Nishizawa, J.; Sasaki, T.; Wang, H. W.; Hayashi, M., Analysis of vibrational spectra of solid-state adenine and adenosine in the terahertz region. Rsc Adv 2014, 4 (1), 269-278.
    27. Long, D. A.; Murfin, F. S.; Hales, J. L.; Kynaston, W., Spectroscopic and Thermodynamic Studies of Pyridine Compounds .1. Infra-Red and Raman Spectra of Pyridine and the Alpha-Picolines, Beta-Picolines and Gamma-Picolines. T Faraday Soc 1957, 53 (9), 1171-1180.

    QR CODE