研究生: |
黃威智 Huang, Wei Zhi |
---|---|
論文名稱: |
三維光子晶體的計算軟體(FAME)開發以及說明 User Guide for FAME(Fast Algorithm of Maxwell's Equations) |
指導教授: |
王偉成
Wang, Wei Cheng 林文偉 Lin, Wen Wei |
口試委員: |
林文偉
Lin, Wen Wei 黃聰明 Huang, Tsung Ming |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 74 |
中文關鍵詞: | 特徵向量 、特徵值 |
外文關鍵詞: | eigenvalue, eigenvector, eigendecomposition, singular value decomposition |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了做到的三維光子晶體的數值模擬。由於三維光子晶體是由麥克斯韋
方程組模型,我們使用議的有限差分法推導出明確的矩陣表示。我們得到
一個廣義特徵值問題(GEVP)。對應於所述光子晶體具有面心立方(FCC)
的晶格和簡單立方(SC)的晶格的GEVP 和我們將這些理論結果來推算
GEVP 到一個標準特徵值問題(SEVP)。既然我們想要做的數值模擬,我
們開發FAME 做到這一點,並提供了GUI 界面。本文是介紹了FAME。
In order to do numerical simulations of three dimensional photonic crystals.
Because three dimensional photonic crystals is modeled by the Maxwell
equations, we used Yee’s finite difference scheme to derive the explicit matrix
representation. We get a generalized eigenvalue problem (GEVP).
The GEVP corresponding to the photonic crystals with face centered cubic
(FCC) lattice and simple cubic (SC) lattice and we apply these theoretical
results to project the GEVP to a standard eigenvalue problem (SEVP).
Since we want to do numerical simulation, we developed FAME to do this
and provided a GUI interface. This thesis is a introduction to FAME.
1
References
[1] T.-M. Huang, W.-W. Lin, and W. Wang. ”Matrix Representations of Discrete
Differential Operators and Operations in Electromagnetis”.
73
[2] R.-L. Cherny, H.-E. Hsieh, T.-M. Huang, W.-W. Lin, W. Wang. ”Singular
Value Decompositions for Single-Curl Operators in Three-Dimensional
Maxwell’s Equations for Complex Media”. SIAM. J. Matrix Anal. Appl.,
36(1), 203–224.
[3] T.-M. Huang, H.-E. Hsieh, W.-W. Lin, and W. Wang. ”Matrix representation
of the double-curl operator for simulating three dimensional photonic
crystals”.
[4] K. Yee. Numerical solution of initial boundary value problems involving
Maxwell’s equations in isotropic media. IEEE Trans. Antennas and Propagation,
14:302-307, 1966.
[5] T.-M. Huang, H.-E. Hsieh, W.-W. Lin, and W. Wang. ”Eigendecomposition
of the Discrete Double-Curl Operator with Application to Fast Eigensolver for
Three-Dimensional Photonic Crystals”. SIAM. J. Matrix Anal. Appl., 34(2),
369–391
[6] T.-M. Huang, W.-J. Chang, Y.-L. Huang, W.-W.Lin, and W. Wang. ”Preconditioning
bandgap eigenvalue problems in three-dimensional photonic crystals
simulations”. Journal of Computational Physics 229 (2010) 8684–8703
[7] Z. Jia and C. Li. ”The shift-invert residual arnoldi method and the jacobidavison
method:Theory and algorithms,” arXiv preprint arXiv:1109.5455,
2011.
[8] Z. Jia and C. Li. ”Inner iterations in the shift-invert residual arnoldi method
and the jacobidavison method,” Science China Mathematics, vol. 57, no. 8,
pp. 1733-1752, 2014.
[9] G. L. Sleijpen and H. A. Van der Vorst. ”A jacobi-davidson iteration method
for linera eigenvalue problems,” SIAM Review, vol. 42, no. 2, pp. 267-293,
2000.
[10] M. Luo and Q. H. Liu. ”Three-dimensional dispersive metallic photonic crystals
with a bandgap and a high cutoff frequency, ” Vol. 27, No. 8/August
2010/J. Opt. Soc. Am. A 1879.
74