簡易檢索 / 詳目顯示

研究生: 朱文德
論文名稱: 應用催化性鉑覆膜之敏化304不□鋼於高溫純水環境之裂縫成長速率研究
指導教授: 開執中
蔡春鴻
葉宗洸
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2001
畢業學年度: 89
語文別: 中文
論文頁數: 83
中文關鍵詞: 裂縫成長速率應力腐蝕龜裂沿晶應力腐蝕龜裂輻射促進應力腐蝕龜裂加氫水化學腐蝕電位催化性被覆貴重金屬化學添加法
外文關鍵詞: Crack Growth Rate, CGR, Stress Corrosion Cracking, SCC, Intergranular Stress Corrosion Cracking, IGSCC, Irradiation-Assisted Stress Corrosion Cracking, IASCC, Hydrogen Water Chemistry, HWC, Electrochemical Corrosion Potential, ECP, Catalytic Coatings, Noble Metal Chemical Addition, NMCA
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    核電廠採用的抗腐蝕不□鋼,理論上應至少具有四十年的使用年限,不會因發生腐蝕而影響運轉安全。但1974年起,沸水式反應器(Boiling Water Reactor, BWR)開始出現爐心內部組件龜裂(Vessel Internal Cracking, VIC)的問題,應力腐蝕龜裂(Stress Corrosion Cracking, SCC)是造成壓力槽內部組件劣化的主因,最常發生的劣化案例為不□鋼組件的沿晶應力腐蝕龜裂(Intergranular Stress Corrosion Cracking, IGSCC),及輻射促進應力腐蝕龜裂(Irradiation-Assisted Stress Corrosion Cracking, IASCC)。對於解決服役中電廠壓力槽內部不易更換組件的腐蝕現象,核能工業多採用加氫水化學(Hydrogen Water Chemistry, HWC)技術,降低組件材料的腐蝕電位(Electrochemical Corrosion Potential, ECP),抑制SCC的發生。但HWC有大幅增加管路輻射劑量的副作用。而對於部份壓力槽內組件,如爐心上方空間和爐心側板上部等過氧化氫濃度偏高的區域,抑制IGSCC的效果也不彰。因此又有催化性被覆(Catalytic Coatings)技術(或稱貴重金屬覆膜技術)的開發,利用貴重金屬的催化性,促進HWC的效益,在低注氫量即可達到防制SCC的效果。

    催化性披覆技術中以貴重金屬化學添加法(Noble Metal Chemical Addition, NMCA)為目前研發的趨勢,目前更已在服役的電廠中進行應用。應用結果證實在較少的注氫量下,NMCA即可有效的降低ECP,使其低於臨界電位 -230mV(vs. SHE)以下。

    為了驗證貴重金屬的催化理論及其效益,對於溶氫濃度不足情況下(或純溶氧情況下)可能發生的副作用,必須進一步的探討和研究。本研究以電鍍處理試片(理論厚度500 Å和2000 Å)、化學添加處理試片(12小時和24小時覆膜),以及未覆膜的試片,於模擬BWR爐水環境下(溶氧濃度為300 ppb)進行裂縫成長量測實驗,觀察不同覆膜條件試片的裂縫成長速率(Crack Growth Rate, CGR)。實驗結果顯示,貴重金屬電鍍處理試片的CGR比未覆膜試片高,IGSCC的情形比較嚴重,電鍍理論厚度越大的試片,CGR越高。NMCA覆膜時間的不同對裂縫成長速率影響看不出明顯差異。本研究另外利用上述試片,分別以除氧和通空氣的Na2B4O7待測溶液進行室溫下的動態極化掃描,結果發現鉑覆膜的試片腐蝕電位比未覆膜試片高,通空氣條件下覆膜試片的鈍化電流密度比未覆膜試片高。


    目錄 摘要 壹 致謝 參 目錄 肆 圖目錄 柒 表目錄 壹拾壹 第一章 前言 1 第二章 理論基礎 4 第三章 文獻回顧 11 3.1 應力腐蝕龜裂 11 3.1.1 原因以及防制方法 12 3.2 裂縫-環境理論 16 3.2.1 Coupled Environment Fracture Model 16 3.2.2 PLEDGE Model 22 3.2.3 Environment Assisted Cracking Model 27 3.3加氫水化學裂縫成長速率 29 3.4溫度對裂縫成長影響 30 3.5 流速對裂縫成長的影響 32 3.6裂縫成長速率的監測方法 33 3.7 NMCA對材料在加氫水化學中的腐蝕電位影響 37 3.7.1氧和過氧化氫的陰極反應 37 3.7.2 氫氣的陽極反應 39 第四章 實驗 40 4.1 實驗方法 40 4.2 實驗內容 40 4.2.1 試片製備 40 4.2.2試片敏化處理 45 4.2.3預長氧化膜 45 4.2.4化學添加覆膜 45 4.2.5.電鍍覆膜 46 4.2.6 試片動態疲勞預裂 47 4.2.7 裂縫長度-電位校正曲線圖 49 4.2.8 試片裝置 50 4.2.9 水循環系統 51 4.2.10 水循環管路 53 4.2.11 壓力控制 53 4.2.12 溫度控制 53 4.2.13 水質監測 54 4.2.14 水質控制 54 4.2.15 水中溶氣控制 54 4.2.16 數據監測 55 4.3 實驗條件 55 4.4 裂縫成長速率試驗 55 4.5 表面分析 56 4.6 動態極化掃描分析 56 第五章 結果與討論 57 5.1 裂縫成長速率試驗 57 5.1.1 化學添加覆膜CT試片 57 5.1.2 電鍍覆膜CT試片 61 5.1.3 化學添加覆膜DCB試片(1) 64 5.1.4 化學添加覆膜DCB試片(2) 66 5.2 表面分析 70 5.2.1 掃描式電子顯微鏡 70 5.2.2 Auger電子能譜儀分析 72 5.3 動態極化掃描 75 第六章 結論 78 參考文獻 79

    參考文獻
    (1) D. A. Jones, principles and Prevention of Corrosion, 2nd ed., Prentice Hall, Upper Saddle River, NJ, (1996).
    (2) P. L. Andresen, “Factors Governing The Predictoin of LWR Component SCC Behavior from Laboratory Data”,CORROSION/99, paper no. 145, Houston, TX, NACE International, (1999).
    (3) 葉宗洸, 余明昇, 「國內外沸水式反應器壓力槽內部組件劣化問題」, 核研季刊, 第23期, 民國86年4月, 48~69頁.
    (4) P. L. Andresen, F. P. Ford, “Life Prediction by Mechanistic Modeling and System Monitoring of Environmental Cracking of Iron Alloys in Aqueous Systems,” Materials Science and Engineering, A103,p.167, (1988).
    (5) R. H. Jones, Metals Hanbook, Vol.13, Corrosion, 9th ed., ASM International, Metals Park, OH, (1987) p.145~162.
    (6) M. G. Fontana, Corrosion Engineering, 3rd ed., McGraw-Hill International, (1987).
    (7) 柯賢文編著, 腐蝕及其防制, 初版, 台北市, 全華, 民 84.
    (8) D. D. Macdonald et al ,” Determination of The Fate of The Current in The Stress Corrosion Cracking of Sensitized Type 304 SS in High Temperature Aqueous System”,Corrosion Science , Vol. 37, No. 1, p.189~208, (1995).
    (9) 葉宗洸, 開執中, 貴重金屬化學添加對核一、二廠飼水加氫效果增益研究與預測, 第一次期中報告書, 民國88年4月, 22~36頁.
    (10) 林盈吉, 鉑覆膜之敏化304不□鋼於高溫水中應力腐蝕龜裂之研究, 國立清華大學碩士論文, 民88年10月.
    (11) 李國台, 高溫加氫水化學環境對鉑貴重金屬化學披覆敏化304不□鋼之應力腐蝕研究, 國立清華大學碩士論文, 民90年1月.
    (12) 梁仲賢, 加氫水化學之貴重金屬化學添加效益研究, 期末報告, 民國89年11月14日.
    (13) P. L. Andresen et al, “Characterization of the Roles of Electrochemistry, Convection and Crack Chemistry in Stress Corrosion Cracking”, GE Corporate Research & Development.
    (14) F. P. Ford, D. F. Taylor, P. L. Andresen, “Corrosion-Assisted Cracking of Stainless and Low-Alloy Steels in LWR Environments”, NP-5064M, Research Project 2006-6, Final Report, February 1987.
    (15) Thomas M. Angeliu, P. L. Andresen et al, “Applying Slip-Oxidation to the SCC of Austenitic Materials in BWR/PWR Environments”, CORROSION/98, paper No. 262, Houston, TX, NACE International, (1998).
    (16) A. Turnbull, “Modeling of the Chemistry and electrochemistry in Cracks-A Review”, Corrosion, Vol. 57, No.2, NACE International, (2001).
    (17) E. Kikuchi, M. Itow et al, “Intergranular Stress Corrosion Crack Growth of Sensitized Boiling-Water Reactor Environment”, Corrosion, Vol. 53, No. 4, NACE International, (1997).
    (18) P. L. Andresen, “Mitigation of Stress Corrosion Cracking by Underwater Thermal Spray Coating of Noble Metals”, CORROSION/95, paper no. 412, Houston, TX, NACE International, (1995).
    (19) W.E. Ruther, W. K. Soppet, T. F. Kassner, Corrosion 44, p. 791, (1988).
    (20) F. P. Ford, M. J. Povich, Corrosion 35, p. 569, (1979).
    (21) H.S. Kwon, A. Wuensche, and D.D. Macdonald, “Effects of Flow Rate on Crack Growth in Sensitized Type 304 Stainless Steel in High –Temperature Aqueous Solutions”, Corrosion, Vol. 56, No. 5, May 2000.
    (22) GE Nulear Energy, “In-Reactor Stress Corrosion Monitor : Prototype Development, Installation, and Operation”, final report ESEERCO project ep 85-37 NMPC Project 03-9271.
    (23) S. Hettiarachchi et al., “The Concept of Noble Metal Chemical Addition Tecnology for IGSCC Mitigation of Structural Materials”, Proc. 7th International Symposium on Environmental Degradation of Material in Nuclear Power System-Water Reactors, NACE, Breckenridge, Colorado, Aug.6-10, 1995, p. 735.
    (24) Y. J. Kim, L. W. Niedrack, M. E. Indig, P. L. Andresen, “The Application of Noble Metals in LWR”, JOM, April, (1992),p.14.
    (25) Y. J. Kim and P.L. Andresen, “Corrosion Potential Behavior of Noble Metal-Modified Alloys in High-Temperature Water”,Corrosion, Vol. 52, No. 10, October,(1996).
    (26) Y. J. Kim,”Effect of Noble Metal Addition on Electrochemical Polarization Behavior of H2 Oxidation and O2 Reduction on 304 SS in High Temperature Water”, CORROSION/98, NACE, paper no. 127, NACE International, (1998).
    (27) S. Hettiarachchi, G.P. Wozadlo,”A Novel Approach for Noble Metal Deposition on Surface for IGSCC Mitigation of Boiling Water Reactor Internals”, CORROSION/95, NACE, paper no. 413, NACE International, (1995).
    (28) P.L. Cowan, E. Kiss, Procding of 6th International Symposium on Environmental Degradation of Material in Nuclear Plant, San Diego, California, Augest 1993, NACE.
    (29) S. Hettiarachchi et al.,”The First In-Plant Demonstration of Metal Chemical Addition (NMCA) Technology for IGSCC Mitigation of BWR Internals”, Proc. 8th International Symposium on Environmental Degration of Materials in Nuclear Power Systems-Water Reactors, Amelia Island, Florida, Aug. 10-14, 1997, p. 535.
    (30) S. Hettiarachchi, R. J. Law, W. D. Miller et al.,” First Application of NobleChemTM to an Operating BWR”, Proceedings of the 1998 JAIF Water Chemistry Conference, JAIF, Kashiwazaki, Japen, Oct.11-16, 1998, p. 155.
    (31) Catlin, W. R., Lord, D.C., Prater, T.A., and Coffin, L.F., “The Reversing D-C Electrical Potential Method”,Automated Test Methods for Fracture and Fatigue Crack Growth, ASTM STP 877, W.H.Cullen, R.W. landgraf, L.R. Kaisand, and J. H. Underwood, Eds., American Society for Testing and Materials, Philadelphia, 1985, pp. 67-85.
    (32) T. K. Yeh, “Feasibility Study on Miniaturized In-Core Stress Corrosion Monitor with Variable Load Control”, The Pennsylvania State University, The Graduate School, Dec.1992.
    (33) R. M. L. Foote and V. T. Buchwald,”An Exact solution ofr the Stress Intensity Factor for a Double Cantiliver Beam’, International Journal of Fracture, Vol. 29, p. 125 (1985).
    (34) Masanori Sakai,“A Model of Microdlectrode Ensembles for ECP Behavior of NMCA Treated Materials under BWR Hydrogen Water Chemistry Conditions”, Tenth International Conference on Environmental Degradation of Materials in Nuclear Power Systems Water Reactors, paper no.46.(2001).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE