簡易檢索 / 詳目顯示

研究生: 陳彥銘
Chen, Yen-Ming
論文名稱: 趨近通道效能的非同調編碼傳輸架構
Coded Noncoherent Transmission Schemes for Near-Capacity Performance
指導教授: 翁詠祿
Ueng, Yeong-Luh
口試委員: 林茂昭
呂忠津
趙啟超
蘇育德
魏瑞益
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 100
語文別: 英文
論文頁數: 115
中文關鍵詞: 非同調檢測通道容量遞迴偵測解碼么正空時調變渦輪碼
外文關鍵詞: Noncoherent Detection, Channel Capacity, Iterative Detection and Decoding, Unitary Space-Time Modulation, Turbo Code
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 下個世代的無線通訊系統的主要目標是在於兼顧高資料傳輸速率與高傳輸可靠度。
    然而,在實用的無線通訊系統中, 訊號傳輸遭遇到有著快速通道係數變化速率的衰退通道環境, 且通道變化的情況通常難以被精確的追蹤與估計。通道估測的準確度對資料傳輸的可靠度有著很大的影響。因此, 一個對傳送端與接收端來說都不需要事先知道通道係數資訊的非同調系統是相當具吸引力且需要被妥善設計的。

    在第二章中, 我們聚焦於單輸入單輸出(SISO)非同調通訊系統。在一個未編碼的系統下, 對一群具有非均等功率值的訊號向量來說, 其在非同調區塊衰退通道下的成對錯誤機率(pair-wise error probability)以及它高訊雜比下的近似, 在此章節中被研究且推導出來。而對於一個有著外部編碼的系統, 一個可接近非同調區塊衰退通道(noncoherent block fading channel)的通道容量極限, 且使用碼字交錯(codeword-interleaving)的方法被提出來。針對位元標籤(bit labelling)與碼字交錯的規則, 我們也提出有效的設計方法。在一種特殊設計的遞迴接收演算法的幫助之下, 整個編碼系統可達到一個接近通道容量極限的效果,
    且距離最小所需的訊雜比值大約有1.6dB的距離。

    另一方面, 在第三章與第四章中, 我們聚焦於針對多輸入多輸出(MIMO)通道的非同調通訊系統所使用的調變與解調技術。在第三章中, 一個適用於正交設計的么正空時調變(orthogonally-designed unitary space-time modulation), 具有非常低的複雜度的非同調最大事後機率(maximum {\it a
    posteriori})解調器被提出來。此外, 在使用格雷標籤法則(Gray labelling)QPSK訊號的情況下, 解調所得的軟式值被證明與通道解碼器所回傳的外值資訊(extrinsic information)無關, 因此, 解調器與解碼器之間的遞迴可在沒有任何錯誤效能的損失的情形下被避免。比起使用基於徹底搜尋的傳統非同調最大事後機率解調器的系統, 所提出的系統可達到相同錯誤效能且非常低的複雜度。

    在第四章中, 一種針對非同調衰退通道, 嶄新的渦輪編碼空時調變系統被提出。碼字位元被區非為兩部份, 且分別使用么正空時調變與空間多工的方法來傳輸。由於此一方法有效的增加了傳輸空時訊號矩陣的可能性, 我們可不需藉由增加訊號的調變階數(modulation order)來得到一個大的速率增益。在接收端, 一種操作在渦輪解碼器、用於空間多工的同調解碼器、以及用於么正空時調變的非同調解碼器之間的遞迴解調-解碼演算法被提出。與文獻中的結果相比, 我們所提出的系統不論在錯誤效能以及複雜度上都有著顯著的改善。整個編碼系統可達到一個接近通道容量極限的效果, 且距離最小所需的訊雜比值大約有0.7dB的距離。


    The main task of the next generation of wireless communication systems is aimed at providing high data rates and high transmission reliability. However, in practical wireless communication systems, the signal transmission experiences channel links with rapid fading coefficients, and it is usually difficult to precisely track the channel variations. The accuracy of the channel estimation may
    strongly influence the transmission reliability of the entire communication system. Consequently, the designs for noncoherent coded systems, where neither the transmitter nor the receiver requires the information of the channel coefficients in advance, are desirable. In this thesis, three topics are addressed, which are respectively presented from Chapter 2 to Chapter 4.

    In Chapter 2, the focus is on a single-input single-output (SISO) noncoherent communication system. For uncoded schemes, the pair-wise error probability (PEP) and its high-SNR approximation for the signal vectors with non-uniform power values under noncoherent block fading channels are derived. For coded schemes, a method that approaches the capacity limit for the noncoherent block fading channel using a codeword-interleaving strategy is proposed. The labelling/interleaving rules are also investigated. It is shown that with the assistance of a specially-designed iterative receiving algorithm, the overall coded scheme achieves a near-capacity performance, which is about 1.6 dB away from the capacity limit with constrained input signals.

    In contrast, in Chapter 3 and Chapter 4, the focus is on modulation and detection strategies for a multiple-input multiple-output (MIMO) noncoherent communication system. In Chapter 3, a noncoherent MAP (maximum {\it a posteriori}) demodulator with very low complexity is proposed for orthogonally designed USTM (unitary space-time modulation) schemes. In addition, it is shown that the detected soft values are independent of the extrinsic information fed back from the channel decoder, when Gray-mapped QPSK signal is adopted. As a result, iterative detection and decoding between the noncoherent demodulator and the channel decoder can be avoided without any degradation in performance. Compared to schemes that use a exhaustive-search-based noncoherent MAP demodulator, the proposed scheme achieves the same error performance, and has a much lower detection complexity.

    In Chapter 4, a novel turbo coded space-time modulation scheme for noncoherent block fading channels is presented. The coded bits are divided into two parts, which are then respectively transmitted using USTM and spatial multiplexing (SM). Since this approach effectively increases the cardinality of the set of possible transmit (space-time) signal matrices, a large rate gain can be obtained without increasing the modulation order. At the receiver, an iterative detection-decoding algorithm is performed cooperatively among the turbo decoder, the coherent demodulator for the SM, and the noncoherent demodulator for the USTM. Compared to the previous work in the literature, the proposed scheme can provide significant advantages in both error performance and complexity. The overall designed coded scheme achieves a near-capacity performance, which is
    0.7 dB away from the constrained input capacity limit.

    Abstract . . . . i Contents . . . . vi List of Figures . . . . x List of Tables . . . . xi List of Abbreviations . . . . xii 1 Introduction . . . . 1 1.1 Noncoherent Coded QAM Schemes for SISO Communications . . . . 2 1.2 Noncoherent Coded Transmission Schemes for MIMO Communications . . . . 4 2 Analysis and Design for Noncoherent Coded Amplitude/Phase Modulation in Block Fading Channels . . . . 7 2.1 Introduction . . . . 7 2.2 Pair-wise Error Probability (PEP) Analysis for Noncoherent Amplitude/Phase Modulated Signal Vectors . . . . 11 2.2.1 Noncoherent Block Fading Channel . . . . 11 2.2.2 PEP Analysis for Signal Vectors with Arbitrary Power Values . . . . 12 2.3 Performance Analysis for Noncoherent Coded Amplitude/Phase Modulation Systems . . . . 15 2.3.1 Design Criteria for the Coded Noncoherent Scheme . . . . 15 2.3.2 Differential QAM Modulator . . . . 19 2.3.3 Review of Phase-Quantization-Based Demodulator [16] . . . . 21 2.3.4 Proposed Iterative Channel Amplitude Estimator . . . . 23 2.3.5 Simulation Results . . . . 24 2.4 Proposed Coded Noncoherent Coded Amplitude/Phase Modulation Scheme with Codeword Interleaving . . . . 26 2.4.1 System Description . . . . 26 2.4.2 Labeling/Interleaving Design Criteria for the Proposed Coded Scheme with Codeword Interleaving . . . . 28 2.4.3 Proposed INDD-AC Receiving Algorithm . . . . 29 2.4.4 Simulation Results . . . . 33 2.5 Remarks . . . . 38 3 A Low-Complexity Noncoherent MAP Detector for Turbo- Coded Unitary Space-Time Modulation Scheme . . . . 42 3.1 Introduction . . . . 42 3.2 Turbo Coded Orthogonally Designed Unitary Space-Time Modulation Scheme . . . . 45 3.2.1 Block Fading Channel . . . . 45 3.2.2 Transmission Architecture . . . . 46 3.3 Low-Complexity Noncoherent MAP Detector for the Orthogonally Designed USTM Scheme . . . . 47 3.4 Simulation and Discussion . . . . 53 3.5 Remarks . . . . 54 4 Turbo Coded Noncoherent Space-Time Modulation Using Information- Bearing Pilots and Spatial Multiplexing . . . . 58 4.1 Introduction . . . . 58 4.2 Proposed Turbo Coded Noncoherent Space-Time Modulation . . . . 62 4.2.1 Proposed Transmission Architecture . . . . 62 4.2.2 Achievable Rates for Constrained Input Space-Time Signal Matrices . . . . 65 4.3 Proposed Iterative Detection and Decoding (IDD) Receiver . . . . 68 4.3.1 Noncoherent Demappers for the “Information-bearing” Pilots . . . . 68 4.3.2 Coherent Demappers for the SM Signals . . . . 72 4.3.3 IDD Receiver and its Complexity . . . . 74 4.4 Performance Evaluation . . . . 77 4.4.1 EXIT Chart Analysis . . . . 77 4.4.2 Comparison of Various Channel Estimators . . . . 80 4.4.3 The Proposed Transmission Architecture Using Various Inner Receivers . . . . 82 4.4.4 Comparison with Existing Works . . . . 84 4.5 Remarks . . . . 88 5 Conclusions . . . . 92 Appendix A Proof of Theorem 2.1 : Pairwise Error Probability for Signal Vectors with Unequal Powers . . . . 95 Appendix B Proof of Theorem 2.2 : High-SNR Approximation for the Pair-wise Error Probability . . . . 99 Appendix C Calculation for Differential Entropy H(Y) 102 Bibliography . . . . 104 Publication List of The Author . . . . 113

    [1] R. Knopp and H. Leib, “M-ary phase coding for the noncoherent AWGN channel,” IEEE Trans. Inf. Theory, vol. 40, no. 6, pp. 1968-1984, Nov. 1994.
    [2] D. Raphaeli, “Noncoherent coded modulation,” IEEE Trans. Commun., vol. 44, no. 2, pp. 172-183, Feb. 1996.
    [3] G. Colavolpe and R. Raheli, “Noncoherent sequence detection,” IEEE Trans. Commun., vol. 47, no. 9, pp. 1376-1385, Sep. 1999.
    [4] R. Y.Wei andM. C. Lin, “Noncoherent detection for trellis codedMPSK,” IEEE Trans. Commun., vol. 49, no. 5, pp. 765-768, May 2001.
    [5] F. W. Sun and H. Leib, “Multiple-phase codes for detection without carrier phase reference,” IEEE Trans. Inf. Theory, vol. 44, no. 4, pp. 1477-1491, Jul. 1998.
    [6] R. Y. Wei, “Noncoherent block-coded MPSK,” IEEE Trans. Commun., vol. 53, pp. 978-986, June 2005.
    [7] R. Y. Wei and Y. M. Chen, “Further results on noncoherent block-coded MPSK,” IEEE Trans. Commun., vol. 56, pp. 1616-1625, Oct. 2008.
    [8] H. Jin and T. J. Richardson, “Design of low-density parity-check codes for noncoherent MPSK communication,” in Proc. IEEE Int. Symp. Information Theory, Lausanne, Switzerland, Jun./Jul. 2002, p. 169.
    [9] R. Nuriyev and A. Anastasopoulos, “Capacity and coding for the block independent noncoherent AWGN channel,” IEEE Trans. Inf. Theory, vol. 51, no. 3, pp. 866-883, Mar. 2005.
    [10] Y. M. Chen, Y. L. Ueng, and Y. C. Chao, “A noncoherent coded MPSK scheme with near-capacity performance for channels with fast phase variation,” in Proc. IEEE 71st Semiannual Vehicular Technology Conference (VTC), Taipei, Taiwan, May 16-19, 2010.
    [11] D.Warrier and U. Madhow, “Spectrally efficient noncoherent communication,” IEEE Trans. Inf. Theory, vol. 48, no. 3, pp. 651-668, Mar. 2002.
    [12] R. Y. Wei, S. S. Gu and T. C. Sue, “Noncoherent block-coded TAPSK,” IEEE Trans. Commun., vol. 57, no. 11, pp. 3195-3198, Nov. 2009.
    [13] R. Y. Wei, T. S. Lin and S. S. Gu, “Noncoherent block-coded TAPSK and 16QAM using linear component codes,” IEEE Trans. Commun., vol. 58, no. 9, pp. 2493-2498, Sep. 2010.
    [14] B. M. Hochwald and T. L. Marzetta, “Unitary space-time modulation for multiple-antenna communications in Rayleigh flat fading,” IEEE Trans. Inform. Theory, vol. 46, pp. 2041-2052, Mar. 2000.
    [15] R. R. Chen, R. Koetter, D. Agrawal, and U. Madhow, “Joint demodulation and decoding for the noncoherent block fading channel: a practical framework for approaching channel capacity,” IEEE Trans. Commun., vol. 51, no. 10, pp. 1676-1689, Oct. 2003.
    [16] N. Jacobsen and U. Madhow, “Coded noncoherent communication with amplitude/phase modulation: from shannon theory to practical architectures,” IEEE Trans. Commun., vol. 56, no. 12, pp. 2040-2048, Dec. 2008.
    [17] I. Bahceci, and T. M. Duman, “Combined turbo coding and unitary spacetime modulation,” IEEE Trans. on Commun., vol. 50, no. 8, pp. 1244-1249, Aug. 2002.
    [18] Y. L. Ueng, C. J. Yeh, M. C. Lin, and C. L.Wang, “Turbo coded multiple antenna systems for near-capacity performance,” IEEE J. Select. Areas Commun., vol. 27, no. 6, pp. 954-964, Aug. 2009.
    [19] C. J. Yeh, Y. L. Ueng, M. C. Lin, and M. C. Lu “Interblock memory for turbo coding,” IEEE Trans. on Commun., vol. 58, no. 2, pp. 390-393, Feb. 2010.
    [20] G. Caire, G. Taricco, and E. Biglieri, “Bit-interleaved coded modulation,” IEEE Trans. Inform. Theory, vol. 44, no. 3, pp. 927-946, May 1998.
    [21] N. H. Tran, H. H. Nguyen, and T. Le-Ngoc, “Coded unitary space-time modulation with iterative decoding: error performance and mapping design,” IEEE Trans. Commun., vol. 55, no. 4, pp. 703-716, Apr. 2007.
    [22] S. Lin and D. J. Costello, Jr., “Error Control Coding: Fundamentals and Applications, second edition, Prentice Hall: Englewood Cliffs, NJ, 2004.
    [23] S. ten Brink, “Design of serially concatenated codes based on iterative decoding convergence,“ in Proc. Int. Symp. Turbo Codes, Related Topics, Brest, France, 2000, pp. 319-322.
    [24] S. ten Brink, “Convergence behavior of iteratively decoded parallel concatenated code,” IEEE Trans. Commun., vol. 49, no. 10, pp. 1627-1737, Oct. 2001.
    [25] X. Li, A. Chindapol, and J. A. Ritcey, “Bit-interleaved coded modulation with iterative decoding and 8PSK signaling,” IEEE Trans. Commun., vol. 50, no. 8, pp. 1250-1257, Aug. 2002.
    [26] N. H. Tran, H. H. Nguyen, “Design and performance analysis of BICM-ID systems with hypercube constellations,” IEEE Trans. Wireless Commun., vol. 5, no. 5, pp. 1169-1179, May 2006.
    [27] A. Ashikhmin, G. Kramer, and S. ten Brink, “Design of low-density parity-check codes for modulation and detection,” IEEE Trans. Commun., vol. 52, no. 4, pp. 670-678, Apr. 2004.
    [28] J. Hou, P. H. Siegel and L. B. Milstein, “Design of multi-input multioutput systems based on low-density parity-check codes,” IEEE Trans. Commun., vol. 53, no. 4, pp. 601-611, Apr. 2005.
    [29] Y. M. Chen and Y. L. Ueng, “Turbo coded noncoherent space-time modulation using information-bearing pilots and spatial multiplexing,” to appear in IEEE Trans. Commun., vol. 61, no. 6, June 2011.
    [30] I. E. Telatar, “Capacity of multi-antenna Gaussian channels,” Eur. Trans. Telecommun., vol. 10, pp. 585-595, Nov. 1999.
    [31] S. M. Alamouti, “A simple transmitter diversity scheme for wireless communications,” IEEE J. Select. Areas Commun., vol. 16, pp. 1451-1458, Oct. 1998.
    [32] O. Tirkkonen and A. Hottinen, “Complex space-time block codes for four tx antennas,” in Proc. IEEE GLOBECOM, San Francisco, CA, Nov. 2000, pp. 1005-1009.
    [33] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-time block codes from orthogonal designs,” IEEE Trans. Inform. Theory, vol. 49, pp. 1456-1467, July 1999.
    [34] Y. L. Ueng, Y. L. Wu, and R. Y. Wei, “Concatenated space-time block coding with trellis coded modulation using a delay processor,” IEEE Trans. Wireless Commun., vol. 6, no. 12, pp. 4452-4463, Dec. 2007.
    [35] Y. L. Ueng, Y. M. Chen, and J. Y. Lin, “A MIMO-BICM scheme using a convolutional interleaver for delay-sensitive applications,” IEEE Trans. Vehicular Technology, vol. 59, no. 5, pp. 2380-2393, June 2010.
    [36] T.L. Marzetta and B. Hochwald, “Capacity of a mobile multiple-antenna communication link in Rayleigh-flat fading,” IEEE Trans. Inform. Theory, vol. 45, no. 1, pp. 139-157, Jan. 1999.
    [37] L. Zheng and D. Tse, “Communicating on the Grassmann manifold: A geometric approach to the noncoherent multiple antenna channel,” IEEE Trans. Inform. Theory, vol. 48, pp. 359-383, Feb. 2002.
    [38] B. M. Hochwald, T. Marzetta, T. J. Richardson, W. Sweldens, and R. L. Urbanke, “Systematic design of unitary space-time constellations,” IEEE Trans. Inform. Theory, vol. 46, no. 6, pp. 1962-1973, Sept. 2000.
    [39] M. L. McCloud, M. Brehler, and M. K. Varanasi, “Signal design and convolutional coding for noncoherent space-time communication on the block-Rayleigh-fading channel,” IEEE Trans. Inform. Theory, vol. 48, no. 5, pp. 1186-1194, May 2002.
    [40] W. Zhao, G. Leus, and G. B. Giannakis, “Orthogonal design of unitary constellations for uncoded and trellis-coded noncoherent space-time systems,” IEEE Trans. Inform. Theory, vol. 50, no. 6, pp. 1319-1327, May 2004.
    [41] B. L. Hughes, “Differential space-time modulation,“ IEEE Trans. Inform. Theory, vol. 46, pp. 2567-2578, May 2000.
    [42] B. Vucetic, and J. Yuan, Turbo Codes: Principles and Applications, Springer, 2000.
    [43] G. J. Foschini, “Layered space-time architecture for wireless communications in a fading environment when using multi-element antennas,” Bell Labs Tech. J., vol. 1, no. 2, pp.41-59, Aug. 1996.
    [44] A. M. Tonello, “Space-time bit-interleaved coded modulation with an iterative decoding strategy,” in Proc. IEEE Vehicular Technology Conf. (VTC), Boston, MA, USA, pp. 473-478, Sept. 2000.
    [45] A. Stefanov and T. M. Duman, “Turbo-coded modulation for systems with transmit and receive antenna diversity over block fading channels: system model, decoding approaches, and practical considerations,” IEEE J. Select. Areas Commun., vol. 19, pp. 958-968, May 2001.
    [46] Y. L. Wu, R. Y. Wei, and J. D. Chen, “Unitary space-time coded 8PSK,” IEICE Trans. Commun., vol. E87-B, no. 10, pp. 3085-3087, Oct. 2004.
    [47] J. K. Cavers, “An analysis of pilot symbol assisted modulation for Rayleigh fading channels,” IEEE Trans. Veh. Technol., vol. 40, pp. 686-693, Nov. 1991.
    [48] B. Hassibi and B. M. Hochwald, “How much training is needed in multiple antenna wireless links?,” IEEE Trans. Inform. Theory, vol. 49, no. 4, pp. 951-963, Apr. 2003.
    [49] P. Dayal, M. Brehler, and M. K. Varanasi, “Leveraging coherent space time codes for noncoherent communication via training,” IEEE Trans. Inform. Theory, vol. 50, pp. 2058-2080, Sept. 2004.
    [50] A. Krishnamoorthy and A. Anastasopoulos, “Code and receiver design for the noncoherent fast-fading channel,” IEEE J. Select. Areas Commun., vol. 23, no. 9, pp. 1769-1778, Sept. 2005.
    [51] Y. Yu, G. B. Giannakis, and N. Jindal, “Information-bearing noncoherently modulated pilots for MIMO training,” IEEE Trans. Inform. Theory, vol. 53, no. 3, pp. 1160-1168, Mar. 2007.
    [52] T. M. Cover and J. A. Thomas, Elements of Information Theory, Second Edition, New York: Wiley, 2006.
    [53] R. Y. Wei, Y. W. Hsu, and C. C. Pan, “A low-complexity noncoherent iterative space-time demodulator,” IEEE Trans. Commun., vol. 57, no. 10, pp. 2895-2898, Oct. 2009.
    [54] S. M. Kay, Fundamentals of Statistical Signal Processing: Vol I. Estimation Theory, Prentice-Hall, 1993.
    [55] K. M. Abadir and J. R. Magnus. Matrix Algebra, Cambridge University Press, 2005.
    [56] Y. Huang and J. A. Ritcey, “Joint iterative channel estimation and decoding for bit-interleaved coded modulation over correlated fading channels,” IEEE Trans. Wireless Commun., vol. 4, no. 5, pp. 2549-2588, Sept. 2005.
    [57] X. Wautelet, C. Herzet, A. Dejonghe, J. Louveaux, and L. Vandendorpe, “Comparison of EM-based algorithms for MIMO channel estimation,” IEEE Trans. Commun., vol. 55, no. 1, pp. 216-226, Jan. 2007.
    [58] J. Choi, “MIMO-BICM iterative receiver with the EM based channel estimation and simplified MMSE combining with soft cancellation,” IEEE Trans. Signal Processing, vol. 54, no. 8, pp. 3247-3251, Aug. 2006.
    [59] T. Wang, Y. Yao, and G. B. Giannakis, “Non-coherent distributed space time processing for multiuser cooperative transmissions,” IEEE Trans. Wireless Commun., vol. 5, pp. 3339-3343, Dec. 2006.
    [60] H. Mheidat and M. Uysal, “Non-coherent and mismatched-coherent receivers for distributed STBC with amplify-and-forward relaying,” IEEE Trans. Wireless Commun., vol. 6, pp. 4060-4070, Nov. 2007.
    [61] D. H. Nguyen, H. H. Nguyen, and H. D. Tuan, “Power allocation and error performance of distributed unitary space-time modulation in wireless relay networks,” IEEE Trans. Vehicular Technology, vol. 58, no. 7 pp. 3333-
    3346, Sept. 2009.
    [62] S. Ma and J. K. Zhang, “Noncoherent Diagonal Distributed Space-Time Block Codes for Amplify-And-Forward Half-Duplex Cooperative Relay Channels,” IEEE Trans. Vehicular Technology, vol. 60, no. 5 pp. 2400-2405, June 2011.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE