研究生: |
胡邵嵐 |
---|---|
論文名稱: |
Crystallization Behavior of Nano-carbon/Poly(3-hexylthiophene) Composites |
指導教授: | 蘇安仲 |
口試委員: |
楊小青
王嘉興 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 29 |
中文關鍵詞: | P3HT 、CNT 、Avrami 、crystallization |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
There were recent studies suggesting that nano-carbon materials could enhance the crystallinity development or the charge mobility of conjugated polymers. It is highly tempting to speculate that the enhanced charge mobility might be a result of morphological changes in the matrix polymer. By use of wide-angle X-ray scattering (WAXS), and differential scanning calorimetry (DSC), here we report morphological development and crystallization kinetics of poly(3-hexylthiophene) (P3HT) filled with different nano-carbon materials such as single- and multi-walled carbon nanotubes (SWCNT/MWCNT), carbon nanocapsules (CNC) as well as [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). The DSC results indicated that nano-carbon materials may generally enhance instantaneous nucleation, with SWCNT being most effective among the four nano-carbon fillers. WAXS results indicated clear increases of the crystalline domain size upon cooling for CNC composite. Both the classical Avrami equation and a modified version allowing parallel routes were adopted to describe the crystallization kinetics and to determine the corresponding kinetic parameters. For pristine P3HT, the classical Avrami exponent n ≈ 2, suggesting that the crystals are rod-like in shape, as confirmed with polarize optical microscopy (POM). For nano-carbon filled P3HT composites, the apparent value of n generally lies between 1 and 2, implying competing paths of crystallization. Using the modified Avrami equation, it is observed that the addition of the nano-carbon materials can decrease the apparent Avrami exponent n due to enhanced instantaneous nucleation, as indicated by the consistently increased the classical Avrami rate constant K due to increased nucleation density.
1. Mata, J.; Tsukamoto, J. Jpn. J. Appl. Phys. 2004, 43, 214.
2. Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P. Science 2002, 295, 2425.
3. Kymakis, E.; Amaratunga, G. A. J. Appl. Phys. Lett. 2002, 80, 112.
4. Erb, T.; Zhokhavets, U.; Gobsch, G.; Releva, S.; Stuhn, B.; Schilinsky, P.; Waldauf, C.; Brabec, C. J. Adv. Funct. Mater. 2005, 15, 1193.
5. Brinkmann, M.; Rannou, P. Macromolecules 2009, 42, 1525.
6. Surin, M.; Leclere, P.; Lazzaroni, R.; Yuen, J. D.; Wang, G.; Moses, D.; Heeger, A.J.; Cho, S.; Lee, K. J. Appl. Phys. 2006, 100, 033712.
7. Reyes-Reyes, M.; Kim, K.; Carroll, D. L. Appl. Phys. Lett. 2005, 87, 083506.
8. Yu, M. F.; Lourie, O.; Dyer, M. J.; Moloni, K.; Thomas, F. K.; Ruoff, R. S. Science 2000, 87, 215502.
9. Feldman, A. K.; Steigerwald, M. L.; Guo, X.; Nuckolls, C. Acc. Chem. Res. 2008, 41, 1731.
10. Geng, J.; Zeng, T. J. Am. Chem. Soc. 2006, 128, 16827.
11. Kymakis, E.; Amaratunga, G. A. J. Appl. Phts. Lett. 2002, 80, 112.
12. Kymakis, E ; Servati, P; Tzanetakis, P; Koudoumas, E; Kornilious, N; Rompogiannakis, I; Franghiadakis, Y; Amaratunga, G. A. J. Nanotechnology 2007, 18, 435702.
13. Musumeci, A. W.; Silva, G. G.; Liu, J. W.; Martens, W. N.; Waclawil, W. R. Polymer 2007, 48, 1667.
14. Tameev, A. R.; Pereshivko, L. Y.; Vannikov, A. V. Mol. Cryst. Liq. Cryst. 2008, 497, 333.
15. Park, Y. D.; Lim, J. A.; Jang, Y.; Hwang, M.; Lee, H. S.; Lee, D. H.; Lee, H. J.; Baek, J. B.; Cho, K. Organic Electronics 2008, 9, 317.
16. Kayunkid, N; Uttiya, S; Brinkmann, M. Macromolucules 2010, 43, 4961.
17. Chang, C.K.; Hwang, J. Y.; Lai, W. J.; Chen, C. W.; Huang, C. I.; Chen, K. H.; Chen, L. C. J. Phys. Chem. C 2010, 114, 10932.
18. Li, L.; Lu, G.; Yang. X. J. Mater. Chem. 2008, 18, 1984.
19. Wu, W. R.; Jeng, U. S.; Su, C. J.; Wei, K. H.; Su, M. S.; Chiu, M. Y.; Chen, C. Y.; Su, W. B.; Su, C. H.; Su, A. C. Acs Nano 2011, 5, 6233.