簡易檢索 / 詳目顯示

研究生: 徐志朋
Chih-Peng Hsu
論文名稱: 微型直接甲醇燃料電池之單一共平面式設計與製造
Design and fabrication for Coplanar Type μ-DMFC
指導教授: 饒達仁
Da- Jeng Yao
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2007
畢業學年度: 96
語文別: 中文
論文頁數: 141
中文關鍵詞: 微型直接甲醇燃料電池共平面式設計硫酸加熱器
外文關鍵詞: μ-DMFC, Co-Planar type design, sulfuric acid, heater
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中我們利用微機電的製程技術提出了一種有別於傳統形式的燃料電池設計。其特殊之處在於我們把陰極與陽極整合在同一個平面上,而這樣的設計與傳統所謂三明治結構的組裝方式有相當大的差異。我們稱這樣的設計叫做單一共平面式設計(Co-planar type),其中“單一”的部份是指無串聯的意思。
    在設計的部份我們把集電器與觸媒層整合在同一個流道上,並且利用添加硫酸當作電解質的方式來傳遞在流道上反應產生的質子,達到三相定理的必要條件。而反應所需的氧氣,則利用空氣幫浦在陰極的硫酸水溶液中連續施打使水溶液呈現富氧的狀態。之後我們更利用微機電整合性的優點,整合加熱器在流道上,這樣可以省去甲醇預熱的裝置,更確實縮小體積,節省能源,同時達到整體效能的提升。然而除了實驗外我們也建立了數值的模組來搭配分析所有的操作條件。
    製程部分利用KOH蝕刻200μm深度,的流道,黃光微影技術定義電極形狀,最後利用準分子雷射打穿燃料進出需要的孔洞。而在加熱器設計的部份,我們選用金屬鉻,定義出長63mm寬500μm 蜿蜒式的加熱器(總電阻為5.2kΩ)。當我們施加83mA在電極上時,可以達到大約85℃的溫度。
    結果部份,在甲醇濃度2M,硫酸濃度1M下,當我們施加溫度80℃時,電流密度值在5.16mA/cm2下有最大功率值約為0.992 mW/cm2 。


    This research is to fabricate μ-DMFC (micro direct methanol fuel cell) by using MEMS technology. A novel concept of design, compared with the traditional type of DMFC, has been designed and fabricated, which anode and cathode are made in the same plane so called coplanar type of DMFC.

    In this coplanar type of DMFC, we also integrate the current collectors and catalyst layer on the flow channels. In order to conform the three phase theory, we use sulfuric acid as electrolyte which be used to deliver protons. And we pumping air in the cathode fuel make it reach oxygen saturation.

    In order to improve the performance of entire system, we want to integrate the fuel preheat device on the chip, so heater was put on the flow channels. By this way we don’t use the preheat device which be used to traditional fuel cell, then we can save volume and energy consumption, and increase performance in the same time.

    Not only the mathematical model was built, but also the experiment data were measured by using developed μ-DMFC.

    The fabrication of coplanar type μ-DMFC was designed. KOH was used to etch flow channel, then photo resistance was sprayed on the top of flow channels. Lift-off technique was used to define patterns after evaporator deposition. Finally, LASER was used to drill the holes for the inlet/outlet of fuels. Aspect of heater design, we chose Cr metal, 500μm wide and 63mm long (total resistance is 5.2kΩ) zigzag around the flow channel. When the current around 83mA was applied on it, it can reach 85℃ (measure by Thermometer YS-1300K).

    The fuel (2M CH3OH / 1M H2SO4 / H2O) was fed into anode, and (O2-sat. / 1M H2SO4 / H2O) was fed into cathode, operating under 80℃. The maximum power was reached around 0.992mW/cm2 at 5.16mA/cm2 (measure by DC Electronic Load 3310D series). Even through the power density is quite low compared with traditional DMFC, but it still can be used on specific applications.

    摘要 i Abstract ii 誌謝 iii 目錄 iv 圖目錄 vii 表目錄 xiv 第一章 緒論 1 1.1 研究動機 2 1.2 文獻回顧 5 1.2.1 微機電技術之直接甲醇燃料電池 6 1.2.2 平面式甲醇燃料電池文獻探討 10 第二章 基本原理 12 2.1 直接甲醇燃料電池的基本原理 12 2.2 極化現象 14 2.3 甲醇燃料電池理論電位以及效率 16 第三章 共平面式甲醇燃料電池設計 19 3.1 設計概念原理 19 3.1.1 觸媒之反應機制 19 3.1.2 三相原理機制 20 3.1.3 平面式燃料電池設計 22 3.1.4 質子交換膜及傳導機制 24 3.1.5 預測質子擴散因素 25 3.2 數值理論建立 26 3.2.1 理論模型之假設 27 3.2.2 理論參數設定 27 3.2.3 電化學方程式推導 29 3.3 理論模組分析 33 第四章 製程設計及實驗過程討論 39 4.1 製程設計 39 4.2 光罩設計 42 4.2.1 第一代設計光罩尺寸 42 4.2.2 第二代設計光罩尺寸 44 4.2.3 第三代設計光罩尺寸 46 4.2.4 加入heater之設計光罩尺寸 47 4.3 載具設計 48 4.3.1 第一、二代載具設計 48 4.3.2 第三代載具設計 51 4.3.3 組合概念圖 53 4.4 加熱線之設計 54 4.4.1 加熱線設計原理 54 第五章 實驗過程討論 58 5.1 製程設備 58 5.2 製程實驗過程 60 5.3 組裝方法 64 5.4 量測設備 65 第六章 結果與討論 68 6.1 前期實驗結果與討論 68 6.1.1 表面破壞測試探討 73 6.2 改良後實驗結果與討論 77 6.3 理論計算與實驗結果的比較探討 87 6.4 最佳操作條件預測與應證 96 6.5 實驗結果與討論 99 6.5.1 理論模組修正方式 115 第七章 結論與未來展望 117 7.1 結論 117 7.2 未來展望 119 參考文獻 121

    1. 黃鎮江 2003. "燃料電池". 初版. 全華科技圖書股份有限公司:p. 144-167.
    2. Larminie, J. and A. Dicks 2003. "Fuel Cell Systems Explained". 2rd ed. John Wiley.
    3. 高志勇, et al. 2003. "直接甲醇燃料電池製成技術發展現況". 工業材料雜誌. vol 193:p. 111-119.
    4. Cha, H.-Y., et al. 2004. "Fabrication of all-polymer micro-DMFCs using UV-sensitive photoresist." Electrochimica Acta 50(2):p. 795-799.
    5. Lu, G.Q., et al. 2004. "Development and characterization of a silicon-based micro direct methanol fuel cell." Electrochimica Acta 49(5):p. 821-828.
    6. Kelley, S.C., G.A. Deluga, and W.H. Smyrl 2002. "Miniature fuel cells fabricated on silicon substrates." AIChE Journal 48(5):p. 1071-1082.
    7. Yu, J., et al. 2003. "Fabrication of miniature silicon wafer fuel cells with improved performance." Journal of Power Sources 124(1):p. 40-46.
    8. O'Hayre, R., et al. 2002. "A sharp peak in the performance of sputtered platinum fuel cells at ultra-low platinum loading." Journal of Power Sources 109(2):p. 483-493.
    9. Shah, K., W.C. Shin, and R.S. Besser 2004. "A PDMS micro proton exchange membrane fuel cell by conventional and non-conventional microfabrication techniques." Sensors and Actuators B: Chemical 97(3):p. 157-167.
    10. Sim, W.Y., G.Y. Kim, and S.S. Yang 2001. "Fabrication of micro power source (MPS) using a micro direct methanol fuel cell (μDMFC) for the medical applications". The 14th IEEE International Conference on Micro Electro Mechanical Systems. Interlaken,Switzerland:p. 341–344.
    11. Hahn, R., et al. 2004. "Development of a planar micro fuel cell with thin film and micro patterning technologies." Journal of Power Sources 131(2):p. 73-78.
    12. Lee, S.J., et al. 2002. "Design and fabrication of a micro fuel cell array with "flip-flop" interconnection." Journal of Power Sources 112(2):p. 410-418.
    13. Yu, J., et al. 2003. "Fabrication of a miniature twin-fuel-cell on silicon wafer." Electrochimica Acta 48(11):p. 1537-1541.
    14. D'Arrigo, G., et al. 2003. "Fabrication of miniaturized Si-based electrocatalytic membranes." Fuel Cells Bulletin 2003(4):p. 10-12.
    15. Pichonat, T., B. Gauthier-Manuel, and D. Hauden 2004. "A new proton-conducting porous silicon membrane for small fuel cells." Chemical Engineering Journal 101(3):p. 107-111.
    16. Presting, H., et al. 2004. "Porous silicon for micro-sized fuel cell reformer units." Materials Science and Engineering B 108(1):p. 162-165.
    17. Pattekar, A.V. and M.V. Kothare 2004. "A microreactor for hydrogen production in micro fuel cell applications." Microelectromechanical Systems, Journal of 13(1):p. 7-18.
    18. Tanaka, S., et al. 2004. "MEMS-based components of a miniature fuel cell/fuel reformer system." Chemical Engineering Journal 101(1):p. 143-149.
    19. Wainright, J.S., et al. 2003. "Microfabricated fuel cells." Electrochimica Acta 48(20):p. 2869-2877.
    20. Motokawa, S., et al. 2004. "MEMS-based design and fabrication of a new concept micro direct methanol fuel cell." Electrochemistry Communications 6(6):p. 562-565.
    21. Meyers, J.P. and H.L. Maynard 2002. "Design considerations for miniaturized PEM fuel cells." Journal of Power Sources 109(1):p. 76-88.
    22. Choi, J.W. and W. Sung 2005. "A planar and membraneless microscale fuel cell using nickel silver as catalytic". The 13th International Conference on Solid-State Sensors Actuators and Microsystems. Seoul,Korea. vol 2:p. 1852-1855.
    23. Sundmacher, K. and K. Scott 1999. "Direct methanol polymer electrolyte fuel cell: Analysis of charge and mass transfer in the vapour-liquid-solid system." Chemical Engineering Science 54(13):p. 2927-2936.
    24. 萬其超 1992. "電化學之原理與應用". 初版. 商務印書局:p. 5-56.
    25. Frelink, T., W. Visscher, and J.A.R. van Veen 1995. "On the role of Ru and Sn as promotors of methanol electro-oxidation over Pt." Surface Science 335(1):p. 353-360.
    26. 黃秋萍, et al. 2003. "直接甲醇燃料電池的核心膜電極組(MEA)". 工業材料. vol 202:p. 141-150.
    27. Heitner-Wirguin, C. 1996. "Recent advances in perfluorinated ionomer membranes: structure, properties and applications." Journal of Membrane Science 120(1):p. 1-33.
    28. Ni, L., W.-H. Jiang, and S.-J. Han 2000. "Prediction Equation of Conductance for Dilute Electrolyte Solutions." 化工學報 51(2):p. 253-255.
    29. 陳中屏, et al. 2003. "直接甲醇燃料電池用質子交換膜的開發". 工業材料雜誌. vol 196:p. 131-137.
    30. Vera, M. 2007. "A single-phase model for liquid-feed DMFCs with non-Tafel kinetics." Journal of Power Sources In Press, Corrected Proof.
    31. Ge, J. and H. Liu 2007. "A three-dimensional two-phase flow model for a liquid-fed direct methanol fuel cell." Journal of Power Sources 163(2):p. 907-915.
    32. Yang, W.W. and T.S. Zhao 2007. "A two-dimensional, two-phase mass transport model for liquid-feed DMFCs." Electrochimica Acta 52(20):p. 6125-6140.
    33. Vafai, K. and S.J. Kim 1995. "On the limitations of the Brinkman-Forchheimer-extended Darcy equation." International Journal of Heat and Fluid Flow 16(1):p. 11-15.
    34. Scott, K., W. Taama, and J. Cruickshank 1997. "Performance and modelling of a direct methanol solid polymer electrolyte fuel cell." Journal of Power Sources 65(2):p. 159-171.
    35. Wang, Z.H. and C.Y. Wang 2003. "Mathematical Modeling of Liquid-Feed Direct Methanol Fuel Cells." Journal of The Electrochemical Society 150(4):p. A508-A519.
    36. Amphlett, J.C., et al. 1995. "Performance Modeling of the Ballard Mark IV Solid Polymer Electrolyte Fuel Cell." Journal of The Electrochemical Society 142(1):p. 1-8.
    37. 黃忠良 1984. "基本電化學". 初版. 復漢出版社印行:p. 1-45.
    38. Fung, S.K.H., et al. 1996. "Thermal analysis and design of a micro-hotplate for integrated gas-sensor applications." Sensors and Actuators A: Physical 54(2):p. 482-487.
    39. Chung, G.-S. 2004. "Fabrication and characterization of micro-heaters with low-power consumption using SOI membrane and trench structures." Sensors and Actuators A: Physical 112(1):p. 55-60.
    40. Songa, S., et al. 2005. "The effect of methanol and ethanol cross-over on the performance of PtRu/C-based anode DAFCs " Applied Catalysis B: Environmental 55(1):p. 65-72
    41. Bae, T.H.K.a.Y.C. 2005. "A semi-empirical cell voltage model for the direct methanol fuel cell: the methanol crossover effect " Polymer 46(17):p. 6494-6499
    42. 沈坤昇, et al. 2003. "PTFE-Nafion 複合膜的製作及性能研究". 第26屆高分子研討會. 台南,台灣:p. 73-76.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE