研究生: |
蔡富淂 Fu-Te Tsai |
---|---|
論文名稱: |
含硫配位基對DNICs釋放NO的重要性 The critical role of thiolate ligands in tuning NO-release ability of DNICs |
指導教授: |
廖文峰
Wen-Feng Liaw |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 54 |
中文關鍵詞: | 含硫配位基 、一氧化氮 |
外文關鍵詞: | thiolate ligands, nitric oxide, DNICs |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一系列的DNICs {Fe(NO)2}9 [(RS)2Fe(NO)2]- (R = 2-C7H4NS (1)٫o-NHCOCH3-C6H4 (2), C4H3S (3), o-NH2-C6H4 (4), C6H5 (5)) 已被合成並且利用IR, UV-vis, EPR, cyclic voltammetry magnetic susceptibility 以及 X-ray crystallography鑑定出來, 含硫配位基的強度會影響DNICs的氧化還原電位,其E1/2分別為1, -0.93 V; 2, -1.30 V; 3, -1.31 V; 5, -1.33 V, 而相對應的 NO□□ stretching bands分別是1, 1716, 1766; 2, 1705, 1752; 3, 1698, 1743; 4, 1693, 1739; 5, 1693, 1737 cm-1, 動力學的研究發現含硫配位基給予電子的能力愈強則DNICs就愈不易釋放一氧化氮,在常溫的電子順磁光譜中, complexes 2, 3與 5 呈現了清楚的五根分裂, 意指一氧化氮在SOMO的貢獻是有意義的.磁性學的探討說明了DNICs的電子基態應為{Fe-1(+NO)2}9 與 {Fe+1(˙NO)2}9 的resonance hybrid, 因此含硫配位基的強弱對DNICs的穩定性與釋放NO的能力有顯著的影響 ◦
Abstract
A series of {Fe(NO)2}9 LMW-DNICs with the formula [(RS)2Fe(NO)2]- (R = 2-C7H4NS (1), o-NHCOCH3-C6H4 (2), C4H3S (3), o-NH2-C6H4 (4), C6H5 (5)) have been prepared and characterized by means of IR, UV-vis, EPR, cyclic voltammetry magnetic susceptibility and X-ray crystallography. The electron-donating ability of thiolate ligands exerts an influence on the redox potential E1/2: 1, -0.93 V; 2, -1.30 V; 3, -1.31 V; 5, -1.33 V. The corresponding stretching frequencies of the NO bands of complexes 1 – 5 decrease in the order: 1, 1716, 1766; 2, 1705, 1752; 3, 1698, 1743; 4, 1693, 1739; 5, 1693, 1737 cm-1, showing a correlation between the redox potential and the NO stretching frequency. The increased stability of complex 2 as compared with others may be ascribed to intramolecular [N-H····S] interactions in the solid state, even in solution. Kinetic study indicates that LMW-DNICs coordinated with stronger electron-donating thiolates are more stable toward NO release than those with weaker ones. At room temperature, complexes 2, 3 and 5 exhibit a well-resolved five-line EPR spectrum with signal at g = 2.038, 2.027, 2.028, and the hyperfine coupling constants of 2.27, 2.38 and 2.47 G, respectively, the characteristic g value of DNICs. Magnetism study implicates that the ground state electronic configuration of LMW-DNICs {Fe(NO)2}9 motif is best described as a resonance hybrid of {Fe-1(+NO)2}9 and {Fe+1(˙NO)2}9. From this perspective, the nature of thiolate ligands plays a crucial role in finely tuning stability of LMW-DNICs and ability of NO release.
Reference
1. (a) Daniel E. Koshland, Jr. Science 1992, 258, 1861. (b) Vanin, A. F. Biocheistry (Moscow) 1998, 63, 782. (c) Alfred Hausladen, Christopher T. Privalle, Teresa Keng, Joseph DeAngelo, and Jonathan S. Stamler Cell 1996, 86, 719.
2. (a) Louis J. Ignarro Angew. Chem. Int. Ed. 1999, 38, 1882. (b) Ferid Murad Angew. Chem. Int. Ed. 1999, 38, 1856. (c) Robert F. Furchgott Angew. Chem. Int. Ed. 1999, 38, 1870.
3. (a) Benjamin P. Luchsinger, Eric N. Rich, Andrew J. Gow, Elizabeth M. Williams, Jonathan S. Stamler, and David J. Singel Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 461. (b) Jonathan S. Stamler, Li Jia, Jerry P. Eu, Timothy J. McMahon, Ivan T. Demchenko, Joseph, Bonaventura, Kim Gernert, and Claude A. Piantadosi Science 1997, 276, 2034. (c) John R. Pawloski, Douglas T. Hess, and Jonathan S. Stamler Nature 2001, 409, 622. (d) Timothy Joseph McMahon, Anne Exton Stone, Joseph Bonaventura, David John Singel, and Jonathan Soloman Stamler J. Biol. Chem. 2000, 275, 16728.
4. (a)Vera M. Seller, Michael K. Johnson, and Harry A. Dailey Biochemistry 1996, 35, 2699. (b) Ralph N. Watts, and Des R. Richardson Eur. J. Biochem. 2002, 269, 3383.
5. (a) Weijun Huang, Jia Jia, John Cummings, Mark Nelson, Gunter Schneider, and Ylva Lindqvist Stucture 1997, 5, 691. (b) Nagashima, S.; Nakasako, M.; Tsujimura, M.; Takio, K.; Odaka, M.; Yohda, M.; Kamiya, N.; Endo, I. Nat. Struct. Biol. 1998, 5, 347.
6. (a) J. A. McCleverty Chem. Rev. 2004, 104, 403. (b) Enemark, J. H.; Feltham, R. D. Coord. Chem. Rev. 1974, 13, 339.
7. (a) Ford, P. C.; Lorkovic, I. M. Chem. Rev. 2002, 102, 993. (b) Hayton, T. W.; Legzdins, P.; Sharp, W. B. Chem. Rev. 2002, 102, 935. (c) Butler, A. R.; Megson, I. L. Chem. Rev., 2002 102, 1155. (d) Ford, P. C.; Bourassa, J.; Miranda, K.; Lee, B.; Lorkovic, I.; Boggs, S.; Kudo, S.; Laverman, L. Coord. Chem. Rev. 1998, 171, 185. (e) M. A. Vlasova, A. F. Vanin, B. Muller, B. V. Smirin, I. Yu. Malyshev, and E. B. Manukhina Bull. Exper. Biol. Med. 2003, 136, 226.
8. (a) D. Lyn H. Williams Acc. Chem. Res. 1999, 32, 869. (b) N. Arulsamy, D. S. Bohle, J. A. Butt, G. J. Irvine, P. A. Jordan, and E. Sagan J. Am. Chem. Soc. 1999, 121, 7115. (c) Michael D. Bartberger, K. N. Houk, Steven C. Powell, Janathan S. Stamler, and Eric J. Toone J. Am. Chem. Soc. 2000, 122, 5889. (d) Sexton, D. J; Muruganandam, A.; McKenney, D. J.; Mutus, B. Photochem. Photobiol. 1994, 59, 463. (e) Wood, P. D.; Mutus, B.; Redmond, R. W. Photochem. Photobiol. 1996, 64, 518
9. (a) M. Claire Kenney, William E. Antholine, and Helmut Beinert J. Biol. Chem. 1997, 272, 20340. (b) Matthew W. Foster and J. A. Cowan J. Am. Chem. Soc. 1999, 121, 4093. (c) Boese, M.; Mordvintcev, P. I.; Vanin, A. F.; Busse, R.; Mülsch, A. J. Biol. Chem. 1995, 270, 29224. (d) Micheal A. Keese, Matthais Bőse, Alexander Műlsch, R. Heiner Schirmer, and Katja Becker Biochem. Pharm. 1997, 54, 1037. (e) Huangen Ding, and Bruce Demple Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 5146.
10. (a) Boese M, Keese MA, Becker K, Busse R, Műlsh A. J. Biol. Chem. 1997, 272, 21767. (b) Kleschyov AL, Hubert G, Munzel T, Stoclet J-C, Bucher, B. BMC Pharmacol. 2002, 2, 3. (c) Ming-Li Tsai, Chiao-Chun Chen, I-Jui Hsu, Shyue-Chu Ke, Chung-Hung Hsieh, Kuo-An Chiang, Gene-Hsiang Lee, Yu Wang, Jin-Ming Chen, Jyh-Fu Lee, and Wen-Feng Liaw, Inorg. Chem. 2004, 43, 5159.
11. (a) Hedberg, L.; Hedberg, K.; Satija, S.; Swanson, B. I. Inorg. Chem. 1985, 24, 2766. (b) Lee, C.-M.; Hsieh, C.-H.; Dutta, A.; Lee, G.-H.; Liaw, W.-F. J. Am. Chem. Soc. 2003, 125, 11492-11493. (c) Liaw, W.-F.; Lee, J.-H.; Gau, H.-B.; Chen, C.-H.; Lee, G.-H. Inorg. Chim. Acta 2001, 322, 99-105. (d) Albano, V. G; Araneo, A; Bellon, P. L.; Ciani, G.; Manassero, M. J. Organomet. Chem. 1974, 67, 413. (e) Hagen, K. S.; Reynolds, J. G.; Holm, R. H. J. Am. Chem. Soc. 1981, 103, 4054.
12. Works, C. F.; Jocher, C. J.; Bart, G. D.; Bu, X.; Ford, P. C. Inorg. Chem. 2002, 41, 2766.
13. (a) Hsieh, C.-H.; Hsu, I.-J.; Lee, C.-M.; Ke, S.-C.; Wang, T.-Y.; Lee, G.-H.; Wang, Y.; Chen, J.-M.; Lee, J.-F.; Liaw, W.-F. Inorg. Chem. 2003, 42, 3925.(b) Herebian, D.; Bothe, E.; Bill, E.; Weyhermuller, T.; Wieghardt, K. J. Am. Chem. Soc. 2001, 123, 10012.