簡易檢索 / 詳目顯示

研究生: 吳俊緯
Wu, Chun Wei
論文名稱: 可低溫共燒之CaO-Al2O3-SiO2玻璃+氧化鋁系統 之結晶動力學及介電性質之研究
Crystallization Kinetics and Dielectric Properties of Low-fire CaO-Al2O3-SiO2 + Alumina System
指導教授: 簡朝和
Jean, Jau Ho
口試委員: 蔡哲正
李嘉甄
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 58
中文關鍵詞: 低溫共燒陶瓷結晶化介電性質
外文關鍵詞: LTCC, crystallization, dielectric properties
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗探討低介電、可低溫共燒之CaO-Al2O3-SiO2 (CASG) 玻璃-陶瓷之結晶動力學及其機構,以及加入氧化鋁對此玻璃-陶瓷之結晶動力學及其介電性質之影響。純CASG玻璃於燒結過程當中形成pseudowollastonite (CaSiO3)、anorthite (CaAl2Si2O8) 及cristobalite (SiO2) 三種結晶相。由活化能之分析顯示結晶相之孕核受玻璃之相分離 (phase separation) 所控制。Pseudowollastonite 及cristobalite的結晶動力學皆遵循Avrami方程式之分析,並由實驗結果顯示兩者之表觀活化能 (apparent activation energy) 與鹼金屬離子在玻璃中擴散之活化能相近,此暗示擴散為速率控制步驟 (rate-controlling step),而上述之結論再經由分析經量測而獲得的結晶成長速率進一步獲得驗證。當所添加的氧化鋁含量高於一臨界值時,除anorthite外,前述其他結晶相完全被抑制。上述結果係由於氧化鋁溶解於玻璃所致,此溶解現象使玻璃轉變為富鋁 (aluminum-rich) 之組成,且氧化鋁溶入玻璃之速率在動力學上遠較pseudowollastonite及cristobalite之形成為快。而anorthite之結晶動力學同樣依循Avrami方程式之分析,結果顯示其表觀活化能與Al-O鍵的強度相當,此暗示anorthite的形成屬於反應控制動力學 (reaction-controlled kinetics) 機構。在CASG + alumina系統中,隨著燒結時間的增加,材料的介電常數並未有顯著的變化,約為8左右;然而材料的介電損失卻出現顯著的下降,推測其原因為高介電損失相 (CASG) 的減少伴隨著低介電損失相 (anorthite) 的形成。


    Effects of alumina on the devitrification kinetics and dielectric properties of a low-dielectric CaO-Al2O3-SiO2 glass powder have been investigated. Crystalline phases including pseudowollastonite, anorthite and cristobalite are formed during firing of the glass. The crystallization kinetics of crystalline phases follows the analyses of the Avrami equations. Combined with the results of reduced growth rate, the rate-controlling step appears to be alkali ion diffusion in the glass. With added alumina content greater than a critical value, the above crystalline phases are completely suppressed but anorthite is formed. This result is attributed to the dissolution of alumina into the glass which changes the composition of the glass. By using Avrami analysis, the rate-controlling mechanism changes to reaction-controlled kinetics which has an activation energy closely related to Al-O bonding. With increasing anorthite formed, the composites exhibit insignificant change in dielectric constant, but a significant decrease in dielectric loss.

    一.前言…………………………………………………………………...1 二.實驗方法……………………………………………………………...5 2.1 CASG玻璃–陶瓷………………………………………...……...5 2.1.1 CASG玻璃–陶瓷之基本性質………………...………….5 2.1.2 CASG試片之製作………………………………………..5 2.1.3 CASG試片之性質量測…………………………………..5 2.2 CASG + alumina系統………………………………………….6 2.2.1 CASG + alumina系統之基本性質……………………….6 2.2.2 CASG + alumina系統之試片製作……………………….6 2.2.3 CASG + alumina系統之性質量測……………………….7 三.結果與討論…………………………………………………………...8 3.1 CASG玻璃–陶瓷………………………………………..………8 3.1.1 結晶相之鑑定……………………………………………..8 3.1.2 CASG玻璃之緻密化………………………………………8 3.1.3結晶動力學及機構…………………………………………9 3.1.3.1孕核……………………………………………….10 3.1.3.2 變態動力學……………………………………...12 3.1.3.3結晶成長………………………………………….15 3.2 CASG + alumina系統………………………………………….17 3.2.1 alumina與CASG玻璃間之化學反應……………………17 3.2.1.1 alumina與CASG玻璃間之反應動力學及機構..18 3.2.1.2 反應時間與潛伏期之比較……...………………18 3.2.1.3 anorthite之結晶動力學及其機構……………….19 3.2.2 CASG + alumina系統之介電性質……………………….22 四.結論………………………………………………………………….23 五.參考文獻……………………………………………………………25

    1. D. M. Mattox, S. R. Gurkovich, J. A. Olenick, and K. M. Mason, "Low Dielectric Constant, Alumina‐Compatible, Co‐Fired Multilayer Substrate," Ceram. Eng. Sci. Proc., 9 [11-12] 1567-78 (1988).
    2. T. K. Gupta and J. H. Jean, "Principles of the Development of a Silica Dielectric for Microelectronics Packaging," J. Mater. Res., 11 [1] 243-63 (1996).
    3. H. T. Kim, S. H. Kim, S. Nahm, J. D. Byun, and Y. Kim, "Low‐Temperature Sintering and Microwave Dielectric Properties of Zinc Metatitanate‐Rutile Mixtures using Boron," J. Am. Ceram. Soc., 82 [10] 3043-48 (1999).
    4. J. I. Steinberg, S. J. Horowitz, and R. J. Bacher, "Low-Temperature Co-fired Tape Dielectric Material Systems for Multilayer Interconnections"; pp. 31-39. in Advances in Ceramics, Vol. 19. Multilayer Ceramic Devices. Edited by J. B. Blum and W. R. Cannon. American Cermaic Society, Westerville, OH, (1986).
    5. J. H. Jean and S. C. Lin, "Low‐Fire Processing of ZrO2–SnO2–TiO2 Ceramics," J. Am. Ceram. Soc., 83 [3] 1417-22 (2000).
    6. R. R. Tummala, "Ceramic and Glass‐Ceramic Packaging in the 1990s," J. Am. Ceram. Soc., 74 [2] 895-908 (1991).
    7. S. H. Knickerbocker, A. H. Kumar, and L. W. Herron, "Cordierite Glass-Ceramics for Multilayer Ceramic Packaging," Am. Cerma. Soc. Bull., 72 [1] 90-95 (1993).
    8. C. R. Chang and J. H. Jean, "Crystallization Kinetics and Mechanism of Low‐Dielectric, Low‐Temperature, Cofirable CaO‐B2O3‐SiO2 Glass‐Ceramics," J. Am. Ceram. Soc., 82 [7] 1725-32 (1999).
    9. J. H. Jean, Y. C. Fang, S. X. Dai, and D. L. Wilcox, "Devitrification Kinetics and Mechanism of K2O–CaO–SrO–BaO–B2O3–SiO2 Glass‐Ceramic," J. Am. Ceram. Soc., 84 [6] 1354-60 (2001).
    10. X. Y. Chen, W. J. Zhang, S. X. Bai, and Y. G. Du, "Densification and Characterization of SiO2-B2O3-CaO-MgO Glass/Al2O3 Composites for LTCC Application," Ceram. Int., 39 [6] 6355-61 (2013).
    11. Y. Imanaka and N. Kamehara, "Influence of Shrinkage Mismatch between Copper and Ceramics on Dimensional Control of the Multilayer Ceramic Circuit Board," J. Ceram. Soc. Jpn. Int. Ed., 100 558-61 (1992).
    12. A. H. Kumar, P. W. McMillan, and R. R. Tummala, "Glass-Ceramic Structures and Sintered Multilayer Substrates Thereof with Circuit Patterns of Gold, Silver or Copper," U.S. Pat. No. 4 301 324 1981.
    13. M. Avrami, "Kinetics of Phase change: I. General Theory," J. Chem. Phys., 7 [12] 1103-12 (1939).
    14. M. Avrami, "Kinetics of Phase Change: II. Transformation‐Time Relations for Random Distribution of Nuclei," J. Chem. Phys., 8 [2] 212-24 (1940).
    15. M. Avrami, "Kinetics of phase change: III. Granulation, Phase Change and Microstructure," J. Chem. Phys., 9 [2] 177-84 (1941).
    16. S. M. Bud, V. H. Exelby, and J. J. Kirwan, "The Formation of Gas Bubbles in Glass at High Temperature," Glass Tech., 3 [4] 124-29 (1962).
    17. C. G. Rasul and M. Cable, "Spontaneous Bubble Formation in Silicate Melts at High Temperature," J. Am. Ceram. Soc., 49 [10] 568-71 (1966).
    18. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics, 2nd ed.; p. 87. Wiley, New York, 1976.
    19. W. D. Kingery, "Densification during Sintering in the Presence of a Liquid Phase," J. Appl. Phys., 30 [3] 301-06 (1959).
    20. H. S. Cannon and F. V. Lenel, "Proceedings of the Plansee Seminar," Edited by F. Benesovsky, Metallwerk Plansee, Reutte (1953).
    21. P. F. James, "Volume Nucleation in Silicate Glasses"; pp. 59-105. in Glasses and Glass-Ceramics. Edited by M. H. Lewis. Chapman and Hall, New York, 1989.
    22. G. W. Scherer and D. R. Uhlmann, "Effects of Phase Separation on Crystallization Behavior," J. Non-Cryst. Solids, 21 [2] 199-213 (1976).
    23. H. Okumura, A. Inoue, and T. Masumoto, "Heating Rate Dependence of Two Glass Transitions and Phase Separation For a La55Al25Ni20 Amorphous Alloy," Acta Metall. Mater., 41 [3] 915-21 (1993).
    24. T. Kasuga and Y. Abe, "Phase Separation and Crystallization of BiSrCaCu2Al0. 5Ox Glass," J. Am. Ceram. Soc., 76 [7] 1885-87 (1993).
    25. A. Chen and P. F. James, "Amorphous Phase Separation and Crystallization in a Lithium Silicate Glass Prepared by the Sol-Gel Method," J. Non-Cryst. Solids, 100 [1] 353-58 (1988).
    26. D. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys, p. 290. Van Nostrand Reinhold, New York, 1980.
    27. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics, 2nd ed.; p. 99. Wiley, New York, 1976.
    28. W. Weiswieler and E. J. Osen, "Kinetic Studies in the CaO-SiO2 System: II. Reaction Rate Constants and Activation Energies of Selected Diffusion Couples," Cem. Concr. Res., 18 56-65 (1988).
    29. A. Majdic and D. Henning, "Diffusion of Ca and Si in the Liquid Binary System CaO-SiO2 " Ber. Dtsch. Keram. Ges., 47 53 (1970).
    30. P. J. Sipling and R. A. Yund, "Kinetics of Al/Si Disordering in Alkali Feldspars," Geochemi. Trans. and Kinet., 634 185-94 (1974).
    31. R. Freer, "Diffusion in Silicate Minerals and Glasses: A Data Digest and Guide to the Literature," Contrib. Mineral. Petr., 76 [4] 440-54 (1981).
    32. A. K. Varshneya and A. R. Cooper, "Diffusion in the System K2O‐SrO‐SiO2: III, Interdiffusion Coefficients," J. Am. Ceram. Soc., 55 [6] 312-17 (1972).
    33. H. B. May and R. Wollast, "Interdiffusion Coefficients in SiO2‐K2O Melts," J. Am. Ceram. Soc., 57 [1] 30-34 (1974).
    34. K. Watanabe, E. A. Giess, and M. W. Shafer, "The Crystallization Mechanism of High-Cordierite Glass," J. Mater. Sci., 20 [2] 508-15 (1985).
    35. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics, 2nd ed.; p. 343. Wiley, New York, 1976.
    36. P. Richet and Y. Bottinga, "Anorthite, Andesine, Wollastonite, Diopside, Cordierite and Pyrope: Thermodynamics of Melting, Glass Transitions, and Properties of the Amorphous Phases," Earth Planet. Sci. Lett., 67 415-32 (1984).
    37. K. Matsushita and S. Sakka, "Kinetic Study on Non-Isothermal Crystallization of Glass by Thermal Analysis," Bull. Inst. Chem. Res., Kyoto Univ., 59 [3] 159-71 (1981).
    38. E. E. Underwood, A. R. Colcord, and R. C. Waugh, "Quantitative Relationships for Random Microstructures," Ch. 1 in Ceramic Microstructures, Edited by R. M. Fulrath and J. A. Pask, Westview Press, Boulder, CO, (1968).
    39. J. H. Jean and Y. C. Fang, "Devitrification Kinetics and Mechanism of Pyrex Borosilicate Glass," J. Mater. Res., 16 [06] 1752-58 (2001).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE