研究生: |
游宜靜 You,Yi-Jing |
---|---|
論文名稱: |
利用雙級摻鐿光纖放大器架設高功率皮秒雷射系統之研究 A High-Power Picosecond Laser System Using a Dual-Stage Ytterbium-Doped Fiber Amplifier |
指導教授: |
潘犀靈
Pan, Ci-Ling |
口試委員: |
黃衍介
王啟倫 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 95 |
中文關鍵詞: | 超快脈衝 、雷射 、光纖放大器 、摻鐿光纖 |
外文關鍵詞: | ultrafast pulses, laser, fiber amplifier, ytterbium-doped fiber |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文設計及架設一台利用雙級摻鐿光纖放大器的主振盪器功率放大器結構的皮秒高功率雷射。種子光源為二極體泵浦之被動鎖模Nd:GdVO4固態雷射,前級放大器是以光纖纖核直徑為10微米的摻鐿光纖放大器,主要放大器為光纖纖核直徑為30微米的摻鐿光纖放大器。種子光源(波長=1064 nm)經過兩級光放大器後,平均輸出功率可達60 W,脈衝寬度約為10皮秒 (脈衝重複率~ 250MHz),並且脈衝光束輪廓佳 (M2 ~ 1.6)。實驗結果,也與理論模擬預測相吻合。
In this thesis, we designed, constructed and characterized a high-power master oscillator power amplifier system using a dual-stage ytterbium doped fiber amplifier. A diode-pumped solid-state passively mode-locked Nd:GdVO4 laser is the seed laser. For the preamplifier stage, the 10 μm core Yb-doped fiber amplifier is used. For the main amplifier stage, the 30 μm core Yb-doped fiber amplifier is used. After amplification, we can achieve over 60 W output power of 1064 nm signal with pulse width of ~ 10 picosecond (repetition rate ~ 250 MHz). The amplified pulses exhibit excellent beam quality (M2 ~ 1.6). The experimental results are in good agreement with theoretical and predictions.
1. C. J. Koester and E. Snitzer, “Amplification in a Fiber Laser,” Appl. Opt., vol. 3, issue 10, pp. 1182-1186, 1964.
2. J. Stone and C. A. Burrus, “Neodymium-doped fiber lasers: room temperature CW operation with an injection laser pump,” Appl. Opt., vol. 13, issue 6, pp.1256, 1974.
3. W. L. Barnes, S. B. Poole, J. E. Townsend, L. Reekie, D. J. Taylor, and D. N. Payne, “Er3+-Yb3+ and Er3+ doped fiber lasers,” J. Lightwave Technol., vol. 7, no. 10, pp. 1461, 1989.
4. J. Limpert, T. Clausnitzer, A. Liem, T. Schreiber, H.-J. Fuchs, H. Zellmer, E.-B. Kley, and A. Tünnermann, “High-average-power femtosecond fiber chirped pulse amplification system,” Opt. Lett., vol. 28, issue 20, pp. 1984–1986, 2003.
5. A. Liem, J. Limpert, H. Zellmer, and A. Tünnermann, “100-W single-frequency master-oscillator fiber power amplifier,” Opt. Lett., vol. 28, issue 17, pp. 1537-1539, 2003.
6. N. S. Platonov, D. V. Gapontsev, V. P. Gapontsev, and V. Shumilin, “135W CW fiber laser with perfect single mode output,” in Conference on Lasers and Electro-Optics (OSA, Washington, D.C., 2002), postdeadline paper CPDC3.
7. B. Adhimoolam, M. G. Hekelaar, P. Gross, I. D. Lindsay, and K.-J. Boller, “Wavelength-tunable short-Pulse diode-laser fiber-amplifier system around 1.06 um,” IEEE Photon. Technol. Lett., vol. 18, pp. 838–840, 2006.
8. A. J. Budz, A. S. Logan, D. Strickland, and H. K. Haugen, “Ultrashort pulses from a mode-locked diode-oscillator Yb-fiber-amplifier system,” IEEE Photon. Technol. Lett., vol. 19, issue 2, pp. 94–96, 2007.
9. G. P. Agrawal, Nonlinear Fiber Optics, 4th edition, San Diego, Calif : Academic, 2007.
10. P. Dupriez, C. Finot, A. Malinowski, J. K. Sahu, J. Nilsson, D. J. Richardson, “High-power, high repetition rate picosecond and femtosecond sources based on Yb-doped fiber amplification of VECSELs,” Opt. Express, vol. 14, issue 21, pp. 9611–9616, 2006.
11. W. E. Lamb Jr., “Theory of an optical maser,” Phys. Rev., vol. 134, issue 6A, pp. A1429, 1964.
12. H.A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron., vol. 6, issue 6, pp. 1173, 2000.
13. Saleh Teich, Fundamental of Photonics, 2nd edition, John Wiley & Sons, 1991.
14. Andrew M. Weiner, Ultrafast Optics, John Wiley & Sons, 2009.
15. S. D. Yang, Ultrafast Optics (lecture note), 2011.
16. L. E. Hargrove, R. L. Fork, and M. A. Pollack, “Locking of He–Ne laser modes induced by synchronous intracavity modulation,” Appl. Phys. Lett., vol. 5, pp. 4-5, 1964.
17. C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, U. Keller, “Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B, vol. 16, no. 1, pp. 46-56, 1999.
18. R. J. Mears, L. Reekie, I. M. Jauncey, and D. N.Payne, “Low-noise erbium-doped fibre amplifier operating at 1.54 μm,” Electron. Lett, vol. 23, no. 19, pp. 1026-1028, 1987.
19. E. Desurvire, “Design optimization for Efficient Erbium-Doped Fiber Amplifiers,” J. Lightwave Technol., vol. 8, no. 11, pp. 1730, 1990.
20. M. L. Dakss and W. J. Miniscalco, “Fundamental limits on Nd3+-doped fiber amplifier performance at 1.3 μm,” IEEE Photon. Technol. Lett., vol. 2, issue 9, pp. 650-652, 1990.
21. M. Øbro, B. Pedersen, A. Bjarklev, and J. H. Povlsen , “Highly improved fibre amplifier for operation around 1300 nm,” Electron. Lett., vol. 27, no. 5, pp. 470, 1991.
22. Y. Ohishi, T. Kanamori, T. Nishi, and S. Takahashi, “A high gain, high output saturation power Pr3+-doped fluoride fiber amplifier operating at 1.3 μm,” IEEE Photon. Technol. Lett., vol. 3, issue 8, pp. 715-717, 1991.
23. K. Lu and N. K. Dutta ,“Spectroscopic properties of Yb-doped silica glass,” J. Appl. Phys., vol. 91, issue 2, pp. 576, 2002.
24. R¨udiger Paschotta, Johan Nilsson, Anne C. Tropper, and David C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron., vol. 33, no. 7, pp. 1049, 1997.
25. H. M. Pask, Robert J. Carman, David C. Hanna, Anne C. Tropper, Colin J. Mackechnie, Paul R. Barber, and Judith M. Dawes, “ Ytterbium-doped silica lasers: versatile sources for the 1-1.2 μm Region,” IEEE J. Sel. Top. Quantum Electron., vol. 1, no. 1, pp.2-12, 1995.
26. N. P. Barnes, B. M. Walsh, “Amplified spontaneous emission – application to Nd: YAG lasers,” IEEE J. Quantum Electron., vol. 35, issue 1, pp. 101-109, 1999.
27. F. Shimizu, “Frequency broadening in liquids by a short light pulse,” Phys. Rev. Lett., vol. 19, no 19, pp. 1097-1100, 1967.
28. S.A. Planas, N. L. Pires Mansur, C. H.Brito Cruz, and H. L.Fragnito, “Spectral narrowing in the propagation of chirped pulses in single-mode fibers,” Opt. Lett., vol. 18, issue 9, pp. 699–701, 1993.
29. C. V. Raman and K. S. Krishnan, “A New Type of Secondary Radiation,” Nature, vol. 121, no. 3048, pp. 501-502, 1928.
30. R. H. Stolen, E. P. Ippen, and A. R. Tynes, ”Raman oscillation in glass optical waveguide,” Appl. Phys. Lett., vol. 20, issue 2, pp.62, 1972.
31. E.P. Ippen and R.H. Stolen,” Stimulated Brillouin scattering in optical fibers,” Appl. Phys. Lett., vol. 21, issue 11, pp.539, 1972.
32. M. Gong, H. Yu, X. Wushouer, and P. Yan, “Passively mode-locked Nd:YVO4 picosecond laser with oblique incidence on SESAM”, Laser Phys. Lett., vol. 5, no. 7, pp. 514–517, 2008.
33. A. Zaytsev, Chi-Luen Wang, Chih-Hsuan Lin, Ci-Ling Pan, “Robust diode-end-pumped Nd:GdVO4 laser passively mode-locked with saturable output coupler,” Laser Phys., vol. 21, no. 12, pp. 2029–2035, 2011.
34. J. L. He, C. K. Lee, J. Y. J. Huang, S. C. Wang, C. L. Pan, And K. F. Huang, “Diode-pumped passively mode-locked multiwatt Nd:GdVO4 Laser with A saturable Bragg reflector,” Appl. Opt., vol. 42, no. 27, pp. 5496-5499, 2003.
35. B. Zhang, G. Li, M. Chen, Z. Zhang, and Y. Wang, “Passive mode locking of a diode-end-pumped Nd: GdVO4 laser with a semiconductor saturable absorber mirror,” Opt. Lett., vol. 28, issue 19, pp. 1829-1831, 2003.
36. L. Shihua, L. Jie, W. Guanggang, L. Lei, L. Shushan, L. Min, W. Yonggang, and Q. Lianjie, “Experimental study on a diode-pumped passively mode-locking Nd:GdVO4/SESAM laser,” Laser Phys., vol. 18, no. 6, pp.729-731, 2008.
37. C. Honninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, ” Q-switching stability limits of continuous-wave passive mode locking,” J. Opt. Soc. Am. B, vol. 16, no. 1, 46-56, 1999.
38. G. P. Agrawal, Applications of Nonlinear Fiber Optics, 2nd edition, San Diego : Academic, 2008..
39. C. Barnard, “Analytical model for rare-earth-doped fiber amplifiers and lasers,” IEEE J. of Quantum Electron., vol. 30, no. 8, pp. 1817, 1994.
40. O. Svelto, Principles of Laser, 4th edition, New York : Plenum Press, 1998.
41. Anthony E. Siegman, Lasers, University Science Books.
42. F. Di Pasquale and M. Federighi, “Improved gain characteristics in high-concentration Er3+/Yb3+ codoped -glass waveguide amplifiers,” IEEE J. Quantum Electron., vol. 30, no. 9, pp. 2127, 1994.
43. F.Ö. Ilday, J. R. Buckley, W.G. Clark, and F.W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett., vol. 92, issue 21, pp. 213902, 2004.
44. Chih-Hsuan Lin, “Generation of High Power Picosecond Pulses by a Ytterbium-Doped Fiber Laser System,” Master dissertation, National Tsing Hua University, Taiwan (2011)
45. Yong Wang, ”Dynamics of stimulated Raman scattering in double-clad fiber pulse amplifiers,” IEEE J. of Quantum Electron., vol. 41, no. 6, pp. 779-788, 2005.
46. J. Kim, P. Dupriez, C. Codemard, J. Nilsson, and J. K. Sahu, “Suppression of simulated Raman scattering in a high power Yb-doped fiber amplifier using a W-type core with fundamental mode cut-off”, Opt. Express, vol. 14, no. 12, pp. 5103, 2006.