簡易檢索 / 詳目顯示

研究生: 吳建鋒
Wu, Chien-Feng
論文名稱: 具卜松跳躍之隨機平均場系統的多目標控制
Multiobjective H_{2}/H_{infty} Control Design for Linear and Nonlinear Mean-Field Stochastic Jump Diffusion Systems
指導教授: 陳博現
Chen, Bor-Sen
口試委員: 林志民
呂忠津
廖聰明
蔡清池
李柏坤
褚志鵬
韓傳祥
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 191
中文關鍵詞: 多目標控制帕雷托最佳化平均場系統T-S模糊模型演化式演算法
外文關鍵詞: Multiobjective H_{2}/H_{infty} Control Design, Pareto Optimization, Mean Field Jump Diffusion System, Takagi-Sugeno Fuzzy Model, LMI-Constrained MOEA
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,平均場隨機系統(Mean Field Stochastic System)已成為熱門研究領域,被廣泛地應用於工程、物理學、隨機控制、博局論與計量金融等領域。平均場隨機動態系統與一般隨機動態系統最大的差別在於,其動態方程中出現了系統狀態的平均項,而這平均項的出現導致設計平均場隨機動態系統控制器要難上很多。近年的研究,主要在於線性平均場隨機動態系統的成本最佳化設計與強健控制,但目前多只有探討外部雜訊與Wiener process對線性平均場系統造成的影響(即狀態軌跡連續的線性平均場系統)。實際上,多數隨機系統為非線性系統且同時包含Wiener process及Poisson jump process的狀態相依擾動,因此有必要徹底研究Poisson jump process的線性與非線性隨機平均場系統。在實際應用上,希望能兼顧控制器的成本最佳化與強健性,故需導入多目標控制器設計。本論文主要目標在於提出有效率的多目標控制器設計應用在Poisson jump process的線性與非線性隨機平均場系統上,並同時探討Poisson jump process的非線性隨機平均場系統的穩定度、最佳化成本調控設計、強健控制器設計多目標控制器並將其應用在工程、物理及金融系統上。本計畫探討有Wiener process及Poisson process下的非線性隨機平均場的多目標控制設計,並用金融系統作實例。


    In recent years, many researchers have paid their attention to mean field stochastic system. Now, the control design problem of the mean field stochastic system has become an active research field and can be employed in the control designs of engineering, physical, game theory, stochastic and quantitative finance systems. The main difference between a mean field stochastic control design problem and a classical stochastic control design problem is that the mean term ( ) appears in mean field system. For the mean field stochastic control design problems, its controller is more difficult to design than the classic one because of the mean term in their stochastic dynamic systems. In the last decade, most researchers have focused on the optimal cost control and robust control of linear mean field stochastic system with continuous internal disturbance. Only a few studies discussed the linear mean field stochastic system with Poisson jump diffusions. However, most stochastic systems are nonlinear. Moreover, many practical systems not only contain the continuous state dependent intrinsic fluctuation caused by Wiener process but also contain the discontinuous state dependent intrinsic jumping process caused by Poisson process. Further, these mean field stochastic systems are also computed by the external disturbance. It is necessary to do an advance research on the robust and optimal design of nonlinear mean field stochastic system with Poisson jump diffusions for the practical applications. Because engineers always expect the designed controller to be not only optimal but also robust, the conventional single objective optimal cost control design or robust control design may not enough to handle the practical nonlinear stochastic system, respectively. Thus, it is more appealing to propose the multi objective control design to simultaneously achieve the optimal control and robust control for the mean field stochastic system, simultaneously. Our aim in this project is to design a multi-objective controller for the nonlinear mean field stochastic jump diffusion system and then apply the proposed multi-objective controller for the nonlinear mean field stochastic jump diffusion system to engineering, physical and quantitative finance systems.

    1 Introduction 1 1.1 Background of the Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Research Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Main Diculties and Its Solutions . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Main Contributions of the Thesis . . . . . . . . . . . . . . . . . . . . . . 6 1.5 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 Some Mathematical Preliminaries 8 2.1 Probability, Measure and Poisson Processes . . . . . . . . . . . . . . . . 8 2.2 The It^o-L evy Formula for the Stochastic Jump Di usion Controlled Systems 14 2.2.1 It^o-L evy Formula for the Marked Poisson processes . . . . . . . . 14 2.2.2 It^o-L evy Formula for the Compensated Marked Poisson Processes 15 2.3 Existence and Uniqueness of the Nonlinear Stochastic Jump Di usion System 16 3 Multiobjective H2=H1 Control Design of the Linear Mean-Field Stochastic Jump-Di usion Systems 17 3.1 The State-Feedback Control of Type-I Linear MFSJD Systems . . . . . . 18 3.1.1 System Description for Type-I Linear MFSJD Systems . . . . . . 18 3.1.2 Stability Analysis of Type-I Linear MFSJD Systems . . . . . . . . 20 3.1.3 The Optimal H2 Control Design of Type-I Linear MFSJD Systems 21 3.1.4 The Optimal H1 Optimal Robust Control Design of Type-I Linear MFSJD Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.2 The State-Feedback Control of Type-II Linear MFSJD Systems . . . . . 28 3.2.1 System Description for Type-II Linear MFSJD Systems . . . . . . 28 3.2.2 Stability Analysis of Type-II Linear MFSJD Systems . . . . . . . 29 3.2.3 The Optimal H2 Control Design of Type-II Linear MFSJD Systems 29 3.2.4 The Optimal H1 Control Design of Type-II Linear MFSJD Systems 31 3.3 Multiobjective H2=H1 Control Design for the Linear MFSJD Systems: Pareto Optimal Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.3.1 The Preliminaries of the Dynamically Constrained MOP . . . . . 33 3.3.2 The LMI-constrained MOP and its Pareto Optimality . . . . . . . 35 3.3.3 The Crowded Distance Tournament Selection (CDTS) Operator . 38 3.3.4 The Fronts-Squeezing LMI-constrained MOEA . . . . . . . . . . . 42 3.4 Simulation Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.4.1 The Simulation Example for Type-I Linear MFSJD System . . . . 47 3.4.2 The Simulation Example for Type-II Linear MFSJD System . . . 61 3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.6 Theorem Proofs for Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . 73 3.6.1 Proof of Theorem 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.6.2 Proof of Lemma 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.6.3 Proof of Theorem 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.6.4 Proof of Theorem 3.3 . . . . . . . . . . . . . . . . . . . . . . . . . 76 3.6.5 Proof of Theorem 3.5 . . . . . . . . . . . . . . . . . . . . . . . . . 78 3.6.6 Proof of Theorem 3.7 . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.6.7 Proof of Theorem 3.9 . . . . . . . . . . . . . . . . . . . . . . . . . 79 4 Multiobjective H2=H1 Control Design of the Nonlinear Mean-Field Stochastic Jump-Di usion Systems via Fuzzy Approach 80 4.1 The Fuzzy State-Feedback Control Design for Type-I Nonlinear MFSJD Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.1.1 Description of Type-I Nonlinear MFSJD Systems via Takagi-Sugeno Fuzzy Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.1.2 Stability Analysis of Type-I Nonlinear Fuzzy MFSJD Systems . . 86 4.1.3 The Optimal H2 Fuzzy Control Design for Type-I Nonlinear Fuzzy MFSJD Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 4.1.4 The Optimal H1 Robust Fuzzy Control Design for Type-I Nonlinear MFSJD Systems . . . . . . . . . . . . . . . . . . . . . . . . . 91 4.2 The Fuzzy State-Feedback Control Design for Type-II Nonlinear MFSJD Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4.2.1 Description of Type-II Nonlinear MFSJD Systems via Takagi-Sugeno Fuzzy Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4.2.2 Stability Analysis of Type-II Nonlinear Fuzzy MFSJD Systems . . 96 4.2.3 The Optimal H2 Fuzzy Control Design for Type-II Nonlinear Fuzzy MFSJD Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.2.4 The Optimal H1 Robust Fuzzy Control Design for Type-II Nonlinear MFSJD Systems . . . . . . . . . . . . . . . . . . . . . . . . 100 4.3 Multiobjective H2=H1 State-Feedback Control Design for the Nonlinear MFSJD Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 4.3.1 Solving the Multiobjective H2=H1 State-Feedback Control Design Problem of the Nonlinear MFSJD Systems via the Fronts Squeezing LMI-constrained MOEA . . . . . . . . . . . . . . . . . . . . . . . 106 4.4 Simulation Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 4.6 Theorem Proofs of Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . 144 4.6.1 Proof of Theorem 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . 144 4.6.2 Proof of Theorem 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . 144 4.6.3 Proof of Theorem 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . 149 4.6.4 Proof of Theorem 4.4 . . . . . . . . . . . . . . . . . . . . . . . . . 151 4.6.5 Proof of Theorem 4.5 . . . . . . . . . . . . . . . . . . . . . . . . . 152 4.6.6 Proof of Theorem 4.6 . . . . . . . . . . . . . . . . . . . . . . . . . 154 4.6.7 Proof of Theorem 4.9 . . . . . . . . . . . . . . . . . . . . . . . . . 155 4.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 4.7.1 Fuzzy Control Gains for Simulation Example 1 . . . . . . . . . . . 156 4.7.2 Fuzzy Control Gains for Simulation Example 2 . . . . . . . . . . . 167 5 Conclusion 179

    Bibliography
    [1] H. Kwakernaak and R. Sivan, Linear optimal control systems. Wiley-interscience
    New York, 1972.
    [2] E. B. Lee and L. Markus, \Foundations of optimal control theory," DTIC Document,
    Tech. Rep., 1967.
    [3] A. E. Bryson, Applied optimal control: optimization, estimation and control. CRC
    Press, 1975.
    [4] R. F. Stengel, Optimal control and estimation. Dover Publications, 2012.
    [5] S. Tang and X. Li, \Necessary conditions for optimal control of stochastic systems
    with random jumps," SIAM Journal on Control and Optimization, vol. 32, no. 5,
    pp. 1447{1475, 1994.
    [6] E. Al'Brekht, \On the optimal stabilization of nonlinear systems," Journal of Applied Mathematics and Mechanics, vol. 25, no. 5, pp. 1254{1266, 1961.
    [7] R. E. Kalman et al., \Contributions to the theory of optimal control," Bol. Soc.
    Mat. Mexicana, vol. 5, no. 2, pp. 102{119, 1960.
    [8] H. Witsenhausen, \On the sensitivity of optimal control systems," IEEE Transac-
    tions on Automatic Control, vol. 10, no. 4, pp. 495{496, 1965.
    [9] H. Kelley, \An optimal guidance approximation theory," IEEE Transactions on Au-
    tomatic Control, vol. 9, no. 4, pp. 375{380, 1964.
    [10] C. Johnson and W. Wonham, \Optimal bang-bang control with quadratic performance index," Journal of Basic Engineering, Transactions of the ASME, Series D, vol. 86, pp. 107{115, 1964
    [11] S. E. Dreyfus, \Some types of optimal control of stochastic systems," Journal of the
    Society for Industrial and Applied Mathematics, Series A: Control, vol. 2, no. 1, pp.
    120{134, 1964.
    [12] J. J. Florentin, \Optimal control of continuous time, markov, stochastic systems,"
    International Journal of Electronics, vol. 10, no. 6, pp. 473{488, 1961.
    [13] K. Zhou, J. C. Doyle, K. Glover et al., Robust and optimal control. Prentice hall
    New Jersey, 1996.
    [14] P. Gahinet and P. Apkarian, \A linear matrix inequality approach to H1 control,"
    International journal of robust and nonlinear control, vol. 4, no. 4, pp. 421{448,
    1994.
    [15] S. P. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear matrix inequalities
    in system and control theory. SIAM, 1994.
    [16] P. Dorato and D. Vlack, Robust control. IEEE press, 1987.
    [17] J. Chow, L. Harris, M. Kale, H. Othman, J. Sanchez-Gasca, and G. Terwilliger,
    \Robust control design of power system stabilizers using multivariable frequency
    domain techniques," in Decision and Control, 1990., Proceedings of the 29th IEEE
    Conference on. IEEE, 1990, pp. 2067{2073.
    [18] G. Zames, \Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses," IEEE Transactions on Automatic Control, vol. 26, no. 2, pp. 301{320, 1981.
    [19] J. C. Doyle, K. Glover, P. P. Khargonekar, and B. A. Francis, \State-space solutions
    to standard H2 and H1 control problems," IEEE Transactions on Automatic
    Control, vol. 34, no. 8, pp. 831{847, 1989.
    [20] Y. K. Foo and I. Postlethwaite, \An h1-minimax approach to the design of robust
    control systems," Systems & Control Letters, vol. 5, no. 2, pp. 81{88, 1984.
    [21] H. Kimura, \Robust stabilizability for a class of transfer functions," IEEE Transac-
    tions on Automatic Control, vol. 29, no. 9, pp. 788{793, 1984.
    [22] M. Morari, \Robust stability of systems with integral control," IEEE Transactions
    on Automatic Control, vol. 30, no. 6, pp. 574{577, 1985.
    [23] A. J. van der Schaft, \On a state space approach to nonlinear H1 control," Systems
    & Control Letters, vol. 16, no. 1, pp. 1{8, 1991.
    [24] M. Aliyu, \An approach for solving the Hamilton{Jacobi{Isaacs equation (HJIE)
    in nonlinear H1 control," Automatica, vol. 39, no. 5, pp. 877{884, 2003.
    [25] J.-P. Aubin, D. Pujal, and P. Saint-Pierre, Dynamic management of portfolios with
    transaction costs under tychastic uncertainty. Springer, 2005.
    [26] T. Takagi and M. Sugeno, \Fuzzy identication of systems and its applications to
    modeling and control," IEEE Transactions on Systems, Man, and Cybernetics, no. 1,
    pp. 116{132, 1985.
    [27] K. Tanaka and M. Sugeno, \Stability analysis and design of fuzzy control systems,"
    Fuzzy Sets and Systems, vol. 45, no. 2, pp. 135{156, 1992.
    [28] M. Sugeno and T. Yasukawa, \A fuzzy-logic-based approach to qualitative modeling,"
    IEEE Transactions on Fuzzy Systems, vol. 1, no. 1, pp. 7{31, 1993.
    [29] M. Sugeno and K. Tanaka, \Successive identication of a fuzzy model and its applications
    to prediction of a complex system," Fuzzy Sets and Systems, vol. 42, no. 3,
    pp. 315{334, 1991.
    [30] K. Tanaka and H. O. Wang, Fuzzy control systems design and analysis: a linear
    matrix inequality approach. John Wiley & Sons, 2004.
    [31] T.-M. Guerra, A. Kruszewski, L. Vermeiren, and H. Tirmant, \Conditions of output
    stabilization for nonlinear models in the Takagi{Sugeno's form," Fuzzy Sets and
    Systems, vol. 157, no. 9, pp. 1248{1259, 2006.
    [32] C.-S. Tseng, B.-S. Chen, and H.-J. Uang, \Fuzzy tracking control design for nonlinear
    dynamic systems via T-S fuzzy model," IEEE Transactions on Fuzzy Systems, vol. 9,
    no. 3, pp. 381{392, 2001
    [33] B.-S. Chen, C.-S. Tseng, and H.-J. Uang, \Fuzzy di
    erential games for nonlinear
    stochastic systems: suboptimal approach," IEEE Transactions on Fuzzy Systems,
    vol. 10, no. 2, pp. 222{233, 2002.
    [34] B.-S. Chen, C.-H. Chang, and H.-C. Lee, \Robust synthetic biology design: stochastic
    game theory approach," Bioinformatics, vol. 25, no. 14, pp. 1822{1830, 2009.
    [35] B. ¬ksendal, \Stochastic di
    erential equations," in Stochastic di
    erential equations.
    Springer, 2003, pp. 65{84.
    [36] S. E. Shreve, Stochastic calculus for nance II: Continuous-time models. Springer
    Science & Business Media, 2004.
    [37] N. Ikeda and S. Watanabe, Stochastic di
    erential equations and di
    usion processes.
    Elsevier, 2014.
    [38] D. Applebaum, L evy processes and stochastic calculus. Cambridge university press,
    2009.
    [39] D. Lamberton and B. Lapeyre, Introduction to stochastic calculus applied to nance.
    CRC press, 2007.
    [40] D. Hinrichsen and A. J. Pritchard, \Stochastic H1," SIAM Journal on Control and
    Optimization, vol. 36, no. 5, pp. 1504{1538, 1998.
    [41] W. Zhang and B.-S. Chen, \State feedback H1 control for a class of nonlinear
    stochastic systems," SIAM Journal on Control and Optimization, vol. 44, no. 6, pp.
    1973{1991, 2006.
    [42] B.-S. Chen, B.-K. Lee, and L.-B. Guo, \Optimal tracking design for stochastic fuzzy
    systems," IEEE Transactions on Fuzzy Systems, vol. 11, no. 6, pp. 796{813, 2003.
    [43] B.-S. Chen and C.-H. Wu, \Robust optimal reference-tracking design method for
    stochastic synthetic biology systems: T-S fuzzy approach," IEEE Transactions on
    Fuzzy Systems, vol. 18, no. 6, pp. 1144{1159, 2010.
    [44] H. Zhang, Y. Wang, and D. Liu, \Delay-dependent guaranteed cost control for uncertain
    stochastic fuzzy systems with multiple time delays," IEEE Transactions on

    Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 38, no. 1, pp. 126{140,
    2008.
    [45] J. B. Y. G. P. Liu and J. F. Whidborne, Multiobjective optimisation and control.
    Research Studies Press LTD., 2003.
    [46] A. Shari, K. Sabahi, M. A. Shoorehdeli, M. Nekoui, and M. Teshnehlab, \Load frequency
    control in interconnected power system using multi-objective PID controller,"
    Soft Computing in Industrial Applications, 2008. SMCia'08. IEEE Conference on,
    pp. 217{221, 2008.
    [47] C.-L. Lin, H.-Y. Jan, and N.-C. Shieh, \GA-based multiobjective PID control for
    a linear brushless DC motor," IEEE/ASME Transactions on Mechatronics, vol. 8,
    no. 1, pp. 56{65, 2003.
    [48] C. F.Wu, B. S. Chen, and W. Zhang, \Multiobjective investment policy for nonlinear
    stochastic nancial system: Fuzzy approach," IEEE Transactions on Fuzzy Systems,
    vol. 25, no. 2, pp. 460{474, 2017.
    [49] W. Zhang, Y. Huang, and L. Xie, \Innite horizon stochastic H2 / H1 control
    for discrete-time systems with state and disturbance dependent noise," Automatica,
    vol. 44, no. 9, pp. 2306{2316, 2008.
    [50] W. Zhang, H. Zhang, and B.-S. Chen, \Stochastic H2 / H1 control with (x, u, v)-
    dependent noise: Finite horizon case," Automatica, vol. 42, no. 11, pp. 1891{1898,
    2006.
    [51] D. Limebeer, B. D. Anderson, and B. Hendel, \A Nash game approach to mixed H2
    / H1 control," IEEE Transactions on Automatic Control, vol. 39, no. 1, pp. 69{82,
    1994.
    [52] B.-S. Chen and W. Zhang, \Stochastic H2 / H1 control with state-dependent noise,"
    IEEE Transactions on Automatic Control, vol. 49, no. 1, pp. 45{57, 2004.
    [53] M. Kac, \Foundations of kinetic theory," in Proceedings of the Third Berkeley Sym-
    posium on Mathematical Statistics and Probability, vol. 3. Univ of California Press,
    1956.

    QR CODE