簡易檢索 / 詳目顯示

研究生: 王柏仁
Wang, Po-Jen
論文名稱: 非等莫耳 CoCrFeMnNi高熵合金及微量元素添加的變形行為
Deformation behavior of Non-equimolar CoCrFeMnNi High-Entropy Alloys with small additions of alloy elements
指導教授: 葉均蔚
Yeh, Jien-Wei
林樹均
Lin, Su-Jien
口試委員: 李勝隆
洪健龍
楊智超
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 221
中文關鍵詞: 疊差能應力誘發相轉換應變硬化低溫拉伸
外文關鍵詞: stacking fault energy, transformation induced plasticity, strain hardening, cryogenic tensile
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • CoCrFeMnNi等莫耳比高熵合金在先前已有許多論文提到低溫至高溫皆呈現單一 FCC 相,且表現高應變硬化速率而具有高伸長率及抗拉強度。而從 Ni、CoNi、CoFeNi、CoCrFeNi至五元的CoCrFeMnNi,疊差能愈低,也越強越韌。此疊差能愈低歸因於晶格扭曲使能量提高且Suzuki effect使溶質原子容易在疊差缺陷偏析降低能量。本研究之目的即開發更低疊差能的高熵合金,在已知等莫耳CoCrFeMnNi基礎,提高Co及Cr比例、降低Ni含量和添加微量元素,降低疊差能,並找最佳化的比例。
    本實驗合金,分別為Co25、Co30、Co35。其中小晶粒Co25室溫拉伸的伸長率為70%,已超越等莫耳CoCrFeMnNi的50%,在強度表現上也較為優異。從EBSD觀測,前者延性優異的原因可歸因於應力誘發相轉換,使部分FCC相轉換為HCP,因而提升高應變硬化速率。接著以此款合金當作母成分,藉由微量添加Al、Si、Ti、Ge及V等來觀察高應變硬化速率的提升。
    最後發現 Co25合金微量添加 Si 至6 at.%,不但可以維持FCC 相不使合金脆化,強度及延性跟著提升。而添加 Al、Ti、Ge、V等元素皆無法使疊差能有效下降,促進應變硬化率提升。
    在低溫拉伸的表現上,本實驗採用室溫拉伸最優異的合金Co25,分別添加4及6 at.%的Si作比較,結果顯示此兩合金皆無法拉伸至頸縮而提前斷裂,原因為此兩合金在低溫下,FCC 太快相轉換至 HCP,由於 HCP 的滑移系統較少,使整體延性遠不及 CoCrFeMnNi。又由於Fe 為產生HCP的來源,故接著將Fe含量降低,換取Si的添加,分別為 Si_2^*、Si_4^* 及 Si_6^*,其中 Si_2^* 在低溫拉伸表現上強度可達1217.5 MPa,延性為60%,且有明顯的頸縮點。


    High-entropy alloy CoCrFeMnNi has been reported to have a low stacking fault energy and excellent mechanical properties. It showed that CoCrFeMnNi is single FCC from low to high temperature. The stacking fault energy of CoCrFeMnNi is lowest among Ni, CoNi, CoFeNi, CoCrFeNi and CoCrFeMnNi. The low stacking energy is attributed to the lattice distortion which increases the energy and the Suzuki effect which makes it easy to reduce the energy in stacking fault defect by solute segregation. The purpose of this study is to develop high-entropy alloys with even lower stacking fault energy. By increasing the ratio of Co to Cr, decreasing the content of Ni, and adding small mount of element, stacking fault energy is expected to be reduced. From this, we will find optimal proportion with the lowest energy based on CoCrFeMnNi.
    The alloys designed in this experiment were Co25, Co30 and Co35. The tensile behavior of Co25 with small grains shows 70% elongation at room temperature, which exceeds 50% elongation of CoCrFeMnNi. Its strength is higher than CoCrFeMnNi at least 100 MPa as well. The reason for the superior ductility of the former can be attributed to the transformation-induced plasticity, and thereby enhanced strain hardening rate. Co25 was used as a base composition accordingly. The stacking fault energy, strain hardening rate, strength and ductility were assessed by adding Al, Si, Ti, Ge, and V in a small amount.
    It was found that Co25Si with 2, 4 or 6 at.% Si still remains a single FCC phase. The stacking fault energy decreases as Si content increases. Tensile strength and the ductility at room temperature is better than that of Co25. However, adding elements Al, Ti, Ge, or V cannot effectively reduce the stacking fault energy and promote strain hardening rate.
    In the cyrogenic tensile test, Co25, Co25-4Si and Co25-6Si were compared. The results showed that the alloy can’t be stretched to neck point and fractured without warning. The reason is that FCC is converted to HCP quickly at cyrogenic temperature. As slip systems of HCP is lesser than FCC, its ductility becomes far less than that of CoCrFeMnNi. Moreover, as Fe is the source of HCP, the direct deduction of Fe in exchange for the addition of Si is expected to reduce phase transformation. Among Si_2^*, Si_4^* and Si_6^*, tensile strength of Si_2^* is up to 1217.5 MPa, the elongation is 60% at cyrogenic temperature, and there is an obvious necking point.

    致 謝 I 摘 要 V Abstract VII 目 錄 IX 圖目錄 XIV 表目錄 XXX 壹、 前 言 1 貳、 文獻回顧 3 2.1 高熵合金的發展 3 2.2 高熵合金的定義[3] 3 2.3 高熵合金特點 4 2.3.1 高熵效應 (High-entropy effect) 4 2.3.2 嚴重晶格應變效應 (Severe-lattice-distortion effect) 6 2.3.3 遲緩擴散效應 (Sluggish diffusion effect) 8 2.3.4 雞尾酒效應 (Cocktail effect) 9 2.4 FCC 晶體結構 10 2.4.1 FCC 晶體滑移系統 10 2.4.2 湯木森四面體 (Thompson’s Tetrahedron) 11 2.4.3 部分分解差排 12 2.4.4 Lomer-Cottrell Barrier 14 2.4.5 疊差[9] 15 2.4.6 疊差能 (Stacking Fault Energy)[10] 16 2.4.7 疊差能量測 17 2.5 FCC 晶體疲勞與差排結構 23 2.5.1 差排胞組織 (Cell structure)[15] 23 2.5.2 差排滑移形式 25 2.6 σ 相簡介 27 2.7 高熵合金塊材之合金系統 32 2.8 非等莫耳CoCrFeMnNi高熵合金之研究 40 2.9 傳統高Mn合金 43 2.10 Fe-Mn-C 合金微量添加 Al 或 Si 對於拉伸性質影響 44 2.11 本研究目的 47 參、 實驗步驟 49 3.1 合金製備及實驗流程 49 3.1.1 合金成分設計 49 3.1.2 實驗流程 50 3.1.3 真空電弧熔煉 52 3.1.4 均質化處理 53 3.1.5 冷輥軋 53 3.1.6 退火熱處理 53 3.1.7 常溫及低溫拉伸試驗 54 3.2 X-ray繞射分析 55 3.3 微結構分析 55 3.3.1 光學式顯微鏡 55 3.3.2 掃描式電子顯微鏡 (SEM) 55 3.4 硬度量測 56 3.5 XRD 疊差能計算 56 3.6 加工硬化速率 56 3.7 EBSD實驗方法 57 肆、 結果與討論 58 4.1 CoCrFeMnNi 與田口法1~9號合金之基本性質 58 4.1.1 XRD 相鑑定分析 58 4.1.2 輥軋後性質探討 63 4.1.3 可輥軋試片經退火處理之拉伸測試 65 4.1.4 各成分大晶粒強度統整 73 4.1.5 疊差能分析 75 4.2 田口法 Co25、Co30、Co35 號合金之性質表現 80 4.2.1 小晶粒及大晶粒之拉伸性質 80 4.2.2 EBSD 觀測不同狀態下相分率變化 88 4.2.3 各合金成分綜合性質比較 99 4.3 微量元素添加 101 4.3.1 Co25 合金添加 Al 102 4.3.2 Co25 合金添加 Si 118 4.3.3 Co25 合金添加 Ti 133 4.3.4 Co25 合金添加 Ge 145 4.3.5 Co25 合金添加 V 157 4.3.6 Co25 微量添加之拉伸破斷面 167 4.4 其他組田口法合金之改良 172 4.4.1 Co25基地合金改良 172 4.4.2 Co30 合金加 Si 175 4.4.3 Co35Ni15 合金加 Si 180 4.4.4 拉伸性質較優異的合金統整 186 4.4.5 真實應力應變拉伸曲線計算吸收能量 190 4.4.6 探討微量添加疊差能變化 193 4.5 低溫拉伸 196 4.5.1 添加 Si 的 Co25 低溫拉伸 (-145 ℃) 196 4.5.2 新的添加方式 (Si*) 合金低溫拉伸 (-145 oC) 199 4.5.3 分段低溫拉伸試驗 (-145 oC) 203 4.5.4 不同溫度下低溫拉伸試驗 (-50 ℃) 206 伍、 結 論 210 陸、 本研究之貢獻 213 柒、 建議未來研究方向 214 捌、 參考文獻 215

    [1] 李軝, Ni至CoCrFeMnNi等莫耳合金變形行為之比較探討, in 材料科學工程學系碩士論文. 2012, 國立清華大學.
    [2] 鍾宜臻, Co-Ni-Fe-Cr-Mn(Al)合金系列X光繞射強度、硬度、熱傳導及熱膨脹之研究, in 材料科學工程學系. 2006, 國立清華大學.
    [3] J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, and S. Y. Chang, nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials, 2004. 6(5): p. 299-303.
    [4] J. W. Yeh, Recent progress in high-entropy alloys. Annales de Chimie Science des Matériaux, 2006. 31(6): p. 633-648.
    [5] Y. F. Kao, S. K. Chen, T. J. Chen, P. C. Chu, J. W. Yeh, and S. J. Lin, Electrical, magnetic, and Hall properties of AlxCoCrFeNi high-entropy alloys. Journal of Alloys and Compounds, 2011. 509(5): p. 1607-1614.
    [6] J. W. Yeh, S. J. Lin, T. S. Chin, J. Y. Gan, S. K. Chen, T. T. Shun, C. H. Tsau, and S. Y. Chou, Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements. Metallurgical and Materials Transactions A, 2004. 35(8): p. 2533-2536.
    [7] C. J. Tong, Y. L. Chen, J. W. Yeh, S. J. Lin, S. K. Chen, T. T. Shun, C. H. Tsau, and S. Y. Chang, Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metallurgical and Materials Transactions A, 2005. 36(4): p. 881-893.
    [8] S. Ranganathan, Alloyed pleasures: Multimetallic cocktails. Current Science, 2003. 85(5): p. 1404-1406.
    [9] D. Hull and D. J. Bacon, Introduction to dislocations. Vol. 257. 1984: Pergamon Press Oxford.
    [10] G. E. Dieter, Mechanical metallurgy. 1976.
    [11] R. C. Reed, The Superalloys: Fundamentals and Applications. 2006.
    [12] D. Hull and D. J. Bacon, Introduction to Dislocations. Vol. 1. 2011.
    [13] H. M. Otte, Measurement of Stacking‐Fault Energies by X‐Ray Diffraction. Journal of Applied Physics, 1967. 38(1): p. 217-222.
    [14] K. Tanaka, T. Teramoto, and R. Ito, Monocrystalline elastic constants of fcc-CrMnFeCoNi high entropy alloy. MRS Advances, 2017. 2(27): p. 1429-1434.
    [15] N. Jin, C. Zhong, and X. Chen, Cyclic deformation of AISI-310 stainless steel—II. Saturation dislocation structures. Acta Metallurgica et Materialia, 1990. 38(11): p. 2141-2148.
    [16] M. S. Pham, C. Solenthaler, K. G. F. Janssens, and S. R. Holdsworth, Dislocation structure evolution and its effects on cyclic deformation response of AISI 316L stainless steel. Materials Science and Engineering: A, 2011. 528(7-8): p. 3261-3269.
    [17] V. Gerold and H. P. Karnthaler, On the origin of planar slip in f.c.c. alloys. Acta Metallurgica, 1989. 37(8): p. 2177-2183.
    [18] R. E. Reed-Hill, R. Abbaschian, and R. Abbaschian, Physical metallurgy principles. 1973.
    [19] 健. 潘金生, 田民波, 材料科学基础. 1998.
    [20] M. H. Tsai, K. Y. Tsai, C. W. Tsai, C. Lee, C. C. Juan, and J. W. Yeh, Criterion for Sigma Phase Formation in Cr- and V-Containing High-Entropy Alloys. Materials Research Letters, 2013. 1(4): p. 207-212.
    [21] M. H. Tsai, K. C. Chang, J. H. Li, R. C. Tsai, and A. H. Cheng, A second criterion for sigma phase formation in high-entropy alloys. Materials Research Letters, 2015. 4(2): p. 90-95.
    [22] C. J. Tong, M. R. Chen, J. W. Yeh, S. J. Lin, S. K. Chen, T. T. Shun, and S. Y. Chang, Mechanical performance of the Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metallurgical and Materials Transactions A, 2005. 36(5): p. 1263-1271.
    [23] 陳宣佑, Al-Cr-Cu-Fe-Mn-Ni高熵合金變形及退火行為之研究, in 材料科學工程學系碩士論文. 2003, 國立清華大學.
    [24] K. G. Pradeep, C. C. Tasan, M. J. Yao, Y. Deng, H. Springer, and D. Raabe, Non-equiatomic high entropy alloys: Approach towards rapid alloy screening and property-oriented design. Materials Science and Engineering: A, 2015. 648: p. 183-192.
    [25] B. Gludovatz, A. Hohenwarter, D. Catoor, E. H. Chang, E. P. George, and R. O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications. Science, 2014. 345(6201): p. 1153-8.
    [26] M. J. Yao, K. G. Pradeep, C. C. Tasan, and D. Raabe, A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility. Scripta Materialia, 2014. 72-73: p. 5-8.
    [27] Y. Deng, C. C. Tasan, K. G. Pradeep, H. Springer, A. Kostka, and D. Raabe, Design of a twinning-induced plasticity high entropy alloy. Acta Materialia, 2015. 94: p. 124-133.
    [28] Z. Li, K. G. Pradeep, Y. Deng, D. Raabe, and C. C. Tasan, Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature, 2016. 534(7606): p. 227-30.
    [29] Z. Li, C. C. Tasan, K. G. Pradeep, and D. Raabe, A TRIP-assisted dual-phase high-entropy alloy: Grain size and phase fraction effects on deformation behavior. Acta Materialia, 2017. 131: p. 323-335.
    [30] Z. Li and D. Raabe, Strong and Ductile Non-equiatomic High-Entropy Alloys: Design, Processing, Microstructure, and Mechanical Properties. Journal of Metals, 2017. 69(11): p. 2099-2106.
    [31] O. Grässel, L. Krüger, G. Frommeyer, and L. W. Meyer, High strength Fe–Mn–(Al, Si) TRIP/TWIP steels development — properties — application. International Journal of Plasticity, 2000. 16(10-11): p. 1391-1409.
    [32] D. Barbier, N. Gey, S. Allain, N. Bozzolo, and M. Humbert, Analysis of the tensile behavior of a TWIP steel based on the texture and microstructure evolutions. Materials Science and Engineering: A, 2009. 500(1-2): p. 196-206.
    [33] S. Curtze and V. T. Kuokkala, Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate. Acta Materialia, 2010. 58(15): p. 5129-5141.
    [34] O. Bouaziz, S. Allain, C. P. Scott, P. Cugy, and D. Barbier, High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships. Current Opinion in Solid State and Materials Science, 2011. 15(4): p. 141-168.
    [35] I. Gutierrez-Urrutia and D. Raabe, Multistage strain hardening through dislocation substructure and twinning in a high strength and ductile weight-reduced Fe–Mn–Al–C steel. Acta Materialia, 2012. 60(16): p. 5791-5802.
    [36] A. Dumay, J. P. Chateau, S. Allain, S. Migot, and O. Bouaziz, Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe–Mn–C steel. Materials Science and Engineering: A, 2008. 483-484: p. 184-187.
    [37] A. Saeed-Akbari, J. Imlau, U. Prahl, and W. Bleck, Derivation and Variation in Composition-Dependent Stacking Fault Energy Maps Based on Subregular Solution Model in High-Manganese Steels. Metallurgical and Materials Transactions A, 2009. 40(13): p. 3076-3090.
    [38] S. Allain, J. P. Chateau, O. Bouaziz, S. Migot, and N. Guelton, Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe–Mn–C alloys. Materials Science and Engineering: A, 2004. 387-389: p. 158-162.
    [39] K. Jeong, J. E. Jin, Y. S. Jung, S. Kang, and Y. K. Lee, The effects of Si on the mechanical twinning and strain hardening of Fe–18Mn–0.6C twinning-induced plasticity steel. Acta Materialia, 2013. 61(9): p. 3399-3410.
    [40] G. R. Lehnhoff, K. O. Findley, and B. C. De Cooman, The influence of silicon and aluminum alloying on the lattice parameter and stacking fault energy of austenitic steel. Scripta Materialia, 2014. 92: p. 19-22.
    [41] S. M. Lee, S. J. Lee, S. Lee, J. H. Nam, and Y. K. Lee, Tensile properties and deformation mode of Si-added Fe-18Mn-0.6C steels. Acta Materialia, 2018. 144: p. 738-747.
    [42] M. C. Gao, J. W. Yeh, P. K. Liaw, and Y. J. C. S. I. P. Zhang, High-entropy alloys. 2016.
    [43] A. Rohatgi, K. S. Vecchio, and G. T. Gray, The influence of stacking fault energy on the mechanical behavior of Cu and Cu-Al alloys: Deformation twinning, work hardening, and dynamic recovery. Metallurgical and Materials Transactions A, 2001. 32(1): p. 135-145.
    [44] J. A. Venables, The electron microscopy of deformation twinning. Journal of Physics and Chemistry of Solids, 1964. 25(7): p. 685-692.
    [45] O. Johari and G. Thomas, Substructures in explosively deformed Cu and Cu-Al alloys. Acta Metallurgica, 1964. 12(10): p. 1153-1159.
    [46] Y. H. Zhao, X. Z. Liao, Y. T. Zhu, Z. Horita, and T. G. Langdon, Influence of stacking fault energy on nanostructure formation under high pressure torsion. Materials Science and Engineering: A, 2005. 410-411: p. 188-193.
    [47] X. X. Wu, X. Y. San, X. G. Liang, Y. L. Gong, and X. K. Zhu, Effect of stacking fault energy on mechanical behavior of cold-forging Cu and Cu alloys. Materials & Design, 2013. 47: p. 372-376.
    [48] 蔡秉修, AlxCoCrFeMnNi(x=0~1)微結構與機械性質之研究, in 材料科學工程學系. 2014, 國立清華大學.
    [49] H. S. Oh, S. J. Kim, K. Odbadrakh, W. H. Ryu, K. N. Yoon, S. Mu, F. Kormann, Y. Ikeda, C. C. Tasan, D. Raabe, T. Egami, and E. S. Park, Engineering atomic-level complexity in high-entropy and complex concentrated alloys. Nature Communication, 2019. 10(1): p. 2090.
    [50] G. Laplanche, A. Kostka, O. M. Horst, G. Eggeler, and E. P. George, Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy. Acta Materialia, 2016. 118: p. 152-163.

    QR CODE