研究生: |
蔡昕瀚 Tsai, Hsin-Han |
---|---|
論文名稱: |
軍盔盔種與內襯墊設計之人因評估 Ergonomic Evaluation of Military Helmets and Helmet Pad Design |
指導教授: |
王茂駿
Wang, Mao-Jiun 盧俊銘 Lu, Jun-Ming |
口試委員: |
石裕川
Shih, Yuh-Chuan 邱敏綺 Chiu, Min-Chi |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 100 |
中文關鍵詞: | 頭部壓力 、頭部膚溫 、盔內溫濕度 、舒適性 、合適性 |
外文關鍵詞: | contact pressure, skin temperature, in-helmet temperature and humidity, comfort, fit |
相關次數: | 點閱:3 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
軍人作戰時面臨子彈、炸藥等重大生命威脅之下,頭部防護的需求因而上升,由於軍盔乃個人頭部防護的第一道安全防線,不論是在平時操練與實戰防護下,皆需長時間配戴,因此軍盔除了要具備防護武器衝擊功能外,配戴時的感受更是一頂良好軍盔的重要考量。因此,本研究將探討不同軍盔搭配內襯墊的舒適性以及合適性,並提出軍盔與內襯墊的設計建議。
本研究包含兩個實驗,實驗一探討兩類使用者(軍人以及未受過軍事訓練的一般生)配戴三種軍盔(現行使用之PASGT盔以及根據本國國人頭型尺寸所設計的新型全耳盔與新型高耳盔)進行五種操練動作(站立、行走、快走、匍匐前進與臥倒)下的主客觀反應,共招募30位(15位軍人與15位未受過軍事訓練的一般生)年齡介於20~30歲之男性。實驗一結果顯示,兩款新型軍盔在頭部壓力表現普遍較舊盔佳,但彼此間的差異不大;在頭部膚溫與盔內溫濕度方面,兩款新型軍盔對頭部各部位造成的溫濕度上升幅度普遍較舊盔小;多數主觀感受評量結果也顯示,新型高耳盔表現顯著較佳,新型全耳盔次之,舊盔最差。此外,實驗結果也顯示一般生在頭部各部位造成的溫濕度上升幅度普遍較軍人大。
根據實驗一的主客觀結果,可推論一般生較難以快速適應軍盔配戴,因此,為了有效幫助一般生,本研究針對內襯墊進行設計變更,並於實驗二搭配普遍使用之新型全耳盔盔種評估兩種內襯墊設計(原尺寸的襯墊以及經尺寸調整與開孔設計之內襯墊設計)在五種操練動作(同實驗一)下的主客觀反應,此部份共招募30位一般生且年齡介於20~30歲之男性。實驗二結果顯示,兩種內襯墊在頭部各部位壓力具有顯著差異,其中新型內襯墊在各部位造成的壓力普遍較小;在頭部膚溫與盔內溫濕度方面,新型內襯墊對頭部各部位造成的溫濕度上升幅度普遍較原內襯墊小;主觀感受評量方面,同樣以新型內襯墊表現較佳。
最後,本研究依據實驗結果提出未來軍盔與內襯墊設計之改善建議,提供國軍參考,包含使用符合國人頭型之軍盔、減少盔體覆蓋率、使用尺寸合適的內襯墊以及於內襯墊中增加孔洞之建議,期能有效地提升國軍配戴之合適性以及舒適性。
Military helmets have been utilized to provide protection against shrapnel and ballistic threats, which could reduce head injuries and fatalities. Soldiers need to wear military helmets for a long time whether in the routine practice or combat operations. Thus, it is important to investigate the comfort and fit of different helmets and helmet pad design.
This study includes two experiments to measure the subjective and objective data such as contact pressure, skin temperature, in-helmet temperature and humidity, and subjective ratings. The first experiment was to investigate the effects of military training (with or without related experience) and helmet design under different military training courses. Thirty male participants (15 military students and 15 university students) conducted three training courses (standing, walking, brisk walking) in the laboratory environment and two training courses (medium crawling and lying down) in outdoor environment with three military helmets (PASGT helmet, new full-cut helmet and new high-cut helmet). The results showed that both new helmets had better performance (in terms of contact pressure, skin temperature, in-helmet temperature, in-helmet humidity and subjective rating) than the PASGT helmet. The new high-cut helmet had the best considering subjective and objective data, while PASGT helmet had the worst. In addition, the skin temperature, in-helmet temperature and humidity observed in participants without military training showed more increase than those with related experience.
The results also reveal that participants without military training had lower adaptability to physiological responses. In order to help improve their perceived comfort while wearing a military helmet, this study introduced a new helmet pad design, which considered compression ratio and ventilation elements. The second experiment was to evaluate the subjective and objective responses of 30 male participants without military training while wearing helmets with different helmet pad design. (the original pad and the new pad design) under different military training courses. The results showed that the new pad had significantly lower contact pressure. The new pad also produced smaller change in skin temperature, in-helmet temperature and humidity. In respect of the subjective ratings, the new pad also had better performance. According to the results, the new pad design can improve the comfort of users without military training effectively.
Based on the experimental results, this study can provide useful information on military helmets and helmet pad design, including suitable helmet size, less helmet cover rate, proper pad size and ventilation design on helmet pad. The results can help the future development of the military policy-making of personal protective equipment.
中文文獻:
1. 李建璁、林彥輝、楊宜學、陳志勇 (2006)。應用國人頭型資料庫探討安全帽尺寸分類,勞工安全衛生研究季刊,民國95 年,14(1),48-57。
2. 钟进义、吴军 (2002)。 葡多酚对人体抗氧化能力的影响,中国公共卫生,18(4),404-405。
3. 徐淵靜 (1999)。民眾對騎機車戴安全帽及開車繫安全帶之政策滿意度調查。
4. 梁晓冬、周宏、戴诗亮 (2003)。 军盔舒适性研究,工程力学,20(1),96-100。
5. 游志雲、葉文裕、楊宜學、張碧慧(1996)。勞工頭型模式之研究:台灣勞工頭型資料庫與標準頭型之建立,勞工安全衛生研究季刊,民國85 年6 月,第4 卷第2 期,31-46。
6. 邬堂春、陈胜(1999)。15kg 负重沙漠干热应激行军速度和时间对人体 GSH 和 SOD 的影响,中国职业医学,26(4),15-17。
英文文獻:
7. Alam, F., Chowdhury, H., Elmir, Z., Sayogo, A., Love, J., & Subic, A. (2010). An experimental study of thermal comfort and aerodynamic efficiency of recreational and racing bicycle helmets. Procedia Engineering, 2(2), 2413-2418.
8. Albright, J.A. (1976). Cervical spine injuries in football. Connecticut Medicine, 40(10), 677-679.
9. Albright, J.P., Moses, J.M., Feldick, H.G., Dolan, K.D., & Burmeister, L. F. (1976). Nonfatal cervical spine injuries in interscholastic football. JAMA, 236(11), 1243-1245.
10. Bailes, J.E., Petschauer, M., Guskiewicz, K.M., & Marano, G. (2007). Management of cervical spine injuries in athletes. Journal of Athletic Training, 42(1), 126.
11. Ball, R. (2009). Size China - A 3D anthropometric survey of the Chinese head.
12. Beekley, M.D., Alt, J., Buckley, C.M., Duffey, M., & Crowder, T.A. (2007). Effects of heavy load carriage during constant-speed, simulated, road marching. Military Medicine, 172(6), 592-595.
13. Beshai, S., Branco, L.D., & Dobson, K.S. (2013). Lemons Into Lemonade: Development and Validation of an Inventory to Assess Dispositional Thriving. Europe’s Journal of Psychology, 9(1), 62-76.
14. Bogerd, C.P., & Brühwiler, P.A. (2009). Heat loss variations of full-face motorcycle helmets. Applied Ergonomics, 40(2), 161-164.
15. Bogerd, C.P., Rossi, R.M., & Brühwiler, P.A. (2011). Thermal perception of ventilation changes in full-face motorcycle helmets: Subject and Manikin Study. The Annals of Occupational Hygiene 55 (2), 192–201.
16. Bohannon, R.W. (1997). Comfortable and maximum walking speed of adults aged 20-79 years: reference values and determinants. Age and Ageing, 26(1), 15-19.
17. Campbell, S. (2009). PASGT Helmet Test: An Example of Effective Intra-Government Testing Collaboration. Army Evaluation Center Aberdeen Proving Ground MD.
18. Carey, M.E., Herz, M., Corner, B., McEntire, J., Malabarba, D., Paquette, S., & Sampson, J.B. (2000). Ballistic helmets and aspects of their design. Neurosurgery, 47(3), 678-689.
19. Christie, C.J., & Scott, P.A. (2005). Metabolic responses of South African soldiers during simulated marching with 16 combinations of speed and backpack load. Military Medicine, 170(7), 619-622.
20. Clark, M., Romanelli, M., Reger, S.I., Ranganathan, V.K., Black, J., & Dealey, C. (2010). Microclimate in context. International Review. Pressure Ulcer Prevention: Pressure, Shear, Friction and Microclimate in Context. A Consensus Document, 19-25.
21. Davis, G.A., Edmisten, E.D., Thomas, R.E., Rummer, R.B., & Pascoe, D.D. (2001). Effects of ventilated safety helmets in a hot environment. International Journal of Industrial Ergonomics, 27(5), 321-329.
22. De Vries, G. (2016). The Great War Through Picture Postcards. Pen and Sword.
23. Ellis, A.J. (2003). Development of fundamental theory & techniques for the design and optimisation of bicycle helmet ventilation. RMIT University.
24. Eward, J.K. (2012). US Marine Infantry Combat Uniforms and Equipment 2000–12. Bloomsbury Publishing.
25. Eward, J.K. (2016). US Marine Corps Recon and Special Operations Uniforms & Equipment 2000-15. Bloomsbury Publishing.
26. Folgar, F., Scott, B.R., Walsh, S.M., & Wolbert, J. (2007, April). Thermoplastic matrix combat helmet with graphite-epoxy skin. In 23rd International symposium on ballistics, Tarragona, Spain.
27. Fonseca, G.F. (1976). Physiological factors in protective helmet design (No. USARIEM-M-1/77). ArmyMY Research Institute of Environmental Medicine Natick Massachusetts.
28. Formenti, D., Ludwig, N., Trecroci, A., Gargano, M., Michielon, G., Caumo, A., & Alberti, G. (2016). Dynamics of thermographic skin temperature response during squat exercise at two different speeds. Journal of Thermal Biology, 59, 58-63.
29. Gadd, C.W. (1966). Use of a weighted-impulse criterion for estimating injury hazard (No. 660793). SAE Technical Paper.
30. Gurdjian, E.S., & A. Webster. "Head injury." Little Brown Company, Boston (1958).
31. Halimi, M.T., Dhahri, H., Khedher, N.B., Hassen, M.B., & Sakli, F. (2009). Thermal properties of industrial safety helmets. Journal of Applied Sciences Research, 5(7), 833-844.
32. Hämäläinen, O. (1993). Flight helmet weight,+ Gz forces, and neck muscle strain. Aviation, Space, and Environmental Medicine, 64(1), 55-57.
33. Hickling, E.M. (1986). Factors affecting the acceptability of head protection at work. Journal of Occupational Accidents, 8(3), 193-206.
34. Hollies, N.R., & Goldman, R.F. (1977). Clothing comfort: Interaction of thermal, ventilation, construction and assessment factors (No. CONF-7511150-). Ann Arbor Science Publishers, Inc., Ann Arbor, MI.
35. Ho, C.P., Fan, J., Newton, E., & Au, R. (2011). Improving thermal comfort in apparel. Improving Comfort in Clothing, 165-181.
36. Hsu, Y.L., Tai, C.Y., & Chen, T.C. (2000). Improving thermal properties of industrial safety helmets. International Journal of Industrial Ergonomics, 26(1), 109-117.
37. Ichinose‐Kuwahara, T., Inoue, Y., Iseki, Y., Hara, S., Ogura, Y., & Kondo, N. (2010). Experimental Physiology–Research Paper: Sex differences in the effects of physical training on sweat gland responses during a graded exercise. Experimental Physiology, 95(10), 1026-1032.
38. Ivins, B.J., Crowley, J.S., Johnson, J., Warden, D.L., & Schwab, K. A. (2008). Traumatic brain injury risk while parachuting: comparison of the personnel armor system for ground troops helmet and the advanced combat helmet. Military Medicine, 173(12), 1168-1172.
39. Lee, H.P., & Gong, S. W. (2010). Finite element analysis for the evaluation of protective functions of helmets against ballistic impact. Computer Methods in Biomechanics and Biomedical Engineering, 13(5), 537-550.
40. Likert, R. (1932). A technique for the measurement of attitudes. Archives of psychology.
41. Lissner, H.R., Lebow, M., & Evans, F.G. (1960). Experimental studies on the relation between acceleration and intracranial pressure changes in man. Surgery, Gynecology & Obstetrics, 111, 329-338.
42. Liu, X., & Holmer, I. (1995). Evaporative heat transfer characteristics of industrial safety helmets. Applied ergonomics, 26(2), 135-140.
43. McArdle, W.D., Katch, F.I., & Katch, V.L. (1991). Exercise physiology. Medicine & Science in Sports & Exercise, 23(12), 1403.
44. Merla, A., P. Iodice, A. Tangherlini, G.D. Michele, S.D. Romualdo, R. Saggini, & G.L. Romani. (2006) Monitoring skin temperature in trained and untrained subjects throughout thermal video. Proceedings of the 27th Annual International Conference EMBS, Shanghai, China. Sep. 1–4, 1684–1686.
45. Meunier, P., Tack, D., Ricci, A., Bossi, L., & Angel, H. (2000). Helmet accommodation analysis using 3D laser scanning. Applied Ergonomics, 31(4), 361-369.
46. Moss, W.C., & King, M.J. (2011). Impact response of US Army and National Football League helmet pad systems (No. LLNL-SR-464951). Lawrence Livermore National Laboratory, Livermore, CA.
47. Neave, N., Emmett, J., Moss, M., Ayton, R., Scholey, A., & Wesnes, K. (2004). The effects of protective helmet use on physiology and cognition in young cricketers. Applied cognitive psychology, 18(9), 1181-1193.
48. Pang, T.Y., Subic, A., & Takla, M. (2013). A comparative experimental study of the thermal properties of cricket helmets. International Journal of Industrial Ergonomics, 43(2), 161-169.
49. Pang, T.Y., Subic, A., & Takla, M. (2011). Thermal comfort of cricket helmets: An experimental study of heat distribution. Procedia Engineering, 13, 252-257.
50. Rawlins, J.S.P. (1956). Design of crash helmets. The Lancet, 268(6945), 719-724.
51. Salmon, D.M., Harrison, M.F., & Neary, J.P. (2011). Neck pain in military helicopter aircrew and the role of exercise therapy. Aviation, Space, and Environmental Medicine, 82(10), 978-987.
52. Samil, F., & David, N.V. (2012). An ergonomic study of a conventional ballistic helmet. Procedia Engineering, 41, 1660-1666.
53. Shideler, D., & Sigler, D. (Eds.). (2008). The Gun Digest Book of Tactical Gear. Gun Digest Books.
54. Silva, M.A., Cismaşiu, C., & Chiorean, C.G. (2005). Numerical simulation of ballistic impact on composite laminates. International Journal of Impact Engineering, 31(3), 289-306.
55. Stanton, S.L. (1994). US Army Uniforms of World War II. Stackpole Books.
56. Slater, K. (1985). Human comfort (Vol. 1). Springfield, Ill., USA: CC Thomas.
57. Thurstone, L.L. (1927). A law of comparative judgment. Psychological Review, 34(4), 273.
58. Torg, J.S. (1985). Epidemiology, pathomechanics, and prevention of athletic injuries to the cervical spine. Medicine and science in sports and exercise, 17(3), 295-303.
59. Torg, J.S., Vegso, J.J., O'Neill, M.J., & Sennett, B. (1990). The epidemiologic, pathologic, biomechanical, and cinematographic analysis of football-induced cervical spine trauma. The American Journal of Sports Medicine, 18(1), 50-57.
60. Tsuzuki, K., Okamoto-Mizuno, K., & Mizuno, K. (2004). Effects of humid heat exposure on sleep, thermoregulation, melatonin, and microclimate. Journal of Thermal Biology, 29(1), 31-36.
61. Van Hoof, J., & Worswick, M.J. (2001). Combining head models with composite models to simulate ballistic impacts. Waterloo Univ (ONTARIO) Dept Of Mechanical Engineering.
62. Yang, J., Dai, J. & Zhuang, Z. (2009). Human head modeling and personal head protective equipment: a literature review. Digital Human Modeling, 661- 670.
63. Yu, Y., & Lu, S. (1990). The acceptable load while marching at a speed of 5km h-1 for young Chinese males. Ergonomics, 33(7), 885-890.