簡易檢索 / 詳目顯示

研究生: 邱雅琴
Ya Chin Chiou
論文名稱: 矽奈米帶製備及利用穿透式電子顯微鏡臨場 (In situ) 觀察鎳矽化物奈米帶成長之研究
Preparation of Silicon Nanoribbons and Investigation on the Formation of the Nickel Silicide Nanoribbons by In situ Transmission Electron Microscopy
指導教授: 陳力俊
Lih Juann Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 78
中文關鍵詞: 矽奈米帶鎳矽化物奈米帶穿透式電子顯微鏡臨場加熱富鎳之鎳矽化物活化能模擬影像
外文關鍵詞: silicon nanoribbon, nickel silicide nanoribbon, In situ TEM, Ni-rich nickel silicide, activation energy, simulated image
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,一維矽及矽化物奈米結構擁有特殊的性質且有蠻大的潛力應用在半導體或光電產業上,因此受到很多研究團隊的注意。而我們的研究主要著重在一維矽奈米結構的製備,及利用穿透式電子顯微鏡進行臨場 (In situ) 加熱並觀察研究奈米尺度下矽奈米帶(nanoribbon) 轉換成鎳矽化物奈米帶的過程及其相關的成長機制。
    藉由簡單的裝置及利用HF/AgNO3 溶液,在適當實驗條件下可成功地快速製備出大量且規則的單晶矽奈米帶,成長方向與所用之矽基板方向相同,而矽奈米帶的長度則可由反應時間來控制。
    接著,使用鎳網 (300 mesh Ni grid) 來提供鎳原子,將矽奈米帶置於其上,並利用In situ TEM 來加熱此「矽奈米帶/鎳網」的系統,可觀察到鎳原子擴散進矽奈米帶並轉變成鎳矽化物奈米帶的過程,且證明在奈米尺度下,鎳/矽系統中主要的擴散原子為鎳原子。在此系統裡,鎳網可提供之鎳原子遠多於散佈在鎳網上矽奈米帶所含之矽原子,因此所形成的鎳矽化物奈米帶都屬於含鎳較多的相。此外,我們成功地對同一根矽奈米帶進行變溫的觀察,錄下其不同溫度下轉換的過程後,經分析及計算知道其屬於擴散控制的成長機制,再由阿瑞尼士 (Arrhenius) 方程式可求得形成鎳矽化物所需的活化能。使用此系統 (矽奈米帶/鎳網) 進行加熱並臨場觀察的實驗,對於釐清奈米尺度下矽化的機制及過程是很有益處的。
    另外,我們將矽及鎳矽化物奈米帶的高分辨原子影像 (HRTEM image) 與模擬軟體所模擬出的原子影像相比對,可決定出奈米帶的厚度,亦即可知道奈米帶在矽化反應前後的厚度差別。


    Arrays of aligned silicon nanoribbons were prepared on silicon substrates in the solution containing aqueous HF and AgNO3 by metal-nanoparticel-assisted etching technique.
    The in situ investigations of a solid-state reaction where the silicon nanoribbons transformed into nickel silicide nanoribbons are achieved in the silicon nanoribbons/Ni grid system. The results indicate that Ni atoms are still the dominant diffusing species in Ni/Si system at nanometer scale. The condition for the in situ experiments is under Ni-rich situation so that the final phases of the formed silicides are all Ni-rich phases. We also investigate the transformation of Si nanoribbons into nickel silicide nanoribbons at elevated temperature. The activation energy (1.06 eV) for the growth of nickel silicide nanoribbons was obtained from an Arrhenius plot. The approach is useful to clarify the silicidation mechanisms and phase transformation at the nanoscale.
    In addition, using the method of comparison of the experimental high-resolution TEM images with the simulated images, the thickness of nanoribbons could be determined.

    Contents ................................................I Acknowledgement..........................................III Abstract .................................................V Chapter 1. Introduction 1-1 SiliconNanostructures ...............................1 1-1-1 One-Dimensional Semiconductor Nanostructures .....1 1-1-2 Silicon Nanowires and Nanoribbons ................2 1-1-3 Synthesis Method and Growth Mechanism of Silicon Nanostructures ...................................7 1-1-3.1 Vapor-Liquid-Solid Growth Mechanism ...........7 1-1-3.2 Oxide-Assisted Growth Mechanism ...............10 1-1-3.3 Self-Assembled and Metal-Nanoparticle-Assisted Etching Process in Electroless Metal Deposition Nanoelctrochemisty ............................12 1-2 Nickel Silicide Nanostructures ......................15 1-2-1 Silicides ........................................15 1-2-2 Silicide Nanowires ...............................17 1-2-3 Nickel Silicide Nanowires ........................18 1-3 In situ Investigation on the Formation of Silicide Nanostructures ......................................20 Chapter 2. Experimental Procedures 2-1 Preparation of Single-Crystal Si Nanoribbons ........23 2-1-1 Initial Wafer Cleaning ...........................23 2-1-2 Preparation of Etching Solution ..................23 2-1-3 Synthesis of Single-Crystal Silicon Nanoribbons...24 2-2 In situ TEM Observation of the Formation of Nickel Silicide Nanoribbons ................................25 2-3 Determination of the Thickness of Nanoribbons .......27 2-4 Scanning Electron Microscope Observation ............27 2-5 Transmission.........................................29 Chapter 3. Results and Discussions 3-1 Single-Crystalline Si Nanostructures Formed in the HF- AgNO3 System ........................................31 3-2 Formation of the Nickel Silicide Nanoribbons by In situ Transmission Electron Microscopy ....................36 3-2-1 In situ Observation of Phase Transformation of Silicon Nanoribbons into Nickel Silicide Nanoribbons........................................37 3-2-2 Determination of the Thickness of Nanoribbon by Matching HRTEM Image with Simulated Image.........44 Chapter 4. Summary and Conclusions ......................47 References ..............................................49 Figure Captions .........................................55 Figures .................................................60

    1. S. Iijima, “Helical Microtube of Graphitic Carbon,”
    Nature 1991, 354, 56-58.
    2.M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and
    C. M. Lieber, “Growth of Nanowire Superlatteice
    Structures for Nanoscale Photonics and Electronics,”
    Nature 2002, 415, 617-620.
    3.X. Duan, Y. H., Y. Chi, J. Wang, and C. M. Lieber, “Indium Phosphide Nanowires as Building Blocks for
    Nanoscale Electronic and Optoelectronic Devices,” Nature
    2001, 409, 66-69.
    4.Y. Cui, X. Duan, J. Wang, and C. M. Lieber, “Doping and
    Electrical Transport in Silicon Nanowires,” J. Phys.
    Chem. B 2000, 104, 5213-5216.
    5.M. S. Gudiksen, J. Wang, and C. M. Lieber, “Synthetic
    Control of the Diameter and Length of Single Crystal
    Semiconductor Nanowires,” J. Phys. Chem. B 2001, 105,
    4062-4064.
    6.X. Duan, and C. M. Lieber, “General Synthesis of
    Compound Semiconductor Nanowires,” Adv. Mater. 2001, 12,
    298-302.
    7.D. P. Yu, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, J.
    S. Fu, H. Z. Zhang, Y. Ding, G. C. Xiong, L. P. You, J.
    Xu, and S. Q. Feng, “Direct Evidence of Quantum
    Confinement from the Size Dependence of the
    Photoluminescence of Silicon Quantum Wires,” Phys. Rev.
    B 1999, 59, R2498-R2501.
    8.J. D. Holmes, K. P. Johnston, R. C. Doty, and B. A.
    Korgel, “Control of Thickness and Orientation of
    Solution-Grown Silicon Nanowires,” Science 2000, 287,
    1471-1473.
    9.Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Lieber, “High Performance Silicon Nanowire Field Effect
    Transistors,” Nano Lett. 2003, 3, 149-152.
    10.G. F. Zheng, W. Lu, S. Jin, and C. M. Lieber,
    “Synthesis and Fabrication of High-Performance N-type
    Silicon Nanowire Transistors,” Adv. Mater. 2004, 16,
    1890-1893.
    11.Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and
    C. M. Lieber, “Logic Gates and Computation from
    Assebled Nanowire Building Blocks,” Science 2001, 294,
    1313-1317.
    12.Y. Cui, Q. Weir, H. park, and C. M. Lieber, “Nanowire
    Nanosensors for Highly Sensitive and Selective Detection
    of Biological and Chemical Species,” Science 2001, 293,
    1289-1292.
    13.A. M. Morales and C. M. Lieber, “A Laser Ablation
    Method for the Synthesis of Crystalline Semiconductor
    Nanowires,” Science 1998, 279, 208-211.
    14.Frederick C. K. Au, K. W. Wong, Y. H. Tang, Y. F. Zhang,
    I. Bello, and S. T. Lee, “Electron field emission from
    silicon nanowires,” Appl. Phys. Lett. 1999, 75, (12),
    1700-1702.
    15.N, Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, I. Bello,
    and S. T. Lee, “Si nanowires grown from silicon
    oxide,” Chem. Phys. Lett. 1999, 299, (2), 237-242.
    16.Z. W. Pan, Z. R. Dai, L. Xu, S. T. Lee, and Z. L. Wang,
    “Temperature-Controlled Growh of Silicon-Based
    Nanostructures by Thermal Evaporation of SiO Powders,”
    J. Phys. Chem. B 2001, 105, 2507-2514.
    17.N. Wang, Y. H. Zhang, C. S. Lee, and S. T. Lee,
    “Nucleation and Growth of Si Nanowires from Silicon
    Oxide,” Phys. Rev. B 1998, 58, R16024-R16026.
    18.N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, I. Bello,
    and S. T. Lee, “SiO2-enhanced synthesis of Si nanowires
    by laser ablation,” Appl. Phys. Lett. 1998, 73.
    19.Y. H. Tang, Y. F. Zhang, H. Y. Peng, N. Wang, C. S. Lee,
    and S. T. Lee, “Si nanowires synthesized by laser
    ablation of mixed SiC and SiO2 powders,” Chem. Phys.
    Lett. 1999, 314, 16-20.
    20.D. P. Yu, Y. J. Xing, Q. L. Hang, H. F. Yan, J. Xu, Z.
    H. Xi, and S. Q. Feng, “Controlled Growth of Oriented
    Amorphous Silicon Nanowires via A Solid-Liquid-Solid
    (SLS) Mechanism,” Physica E 2001, 9, 305-309.
    21.K. Q. Peng, Y. J. Yan, S. P. Gao, and J. Zhu, “Synhesis
    of Large-Area Silicon Nanowire Arrays via Self-
    Assembling Nanoelectrochemistry,” Adv. Mater. 2002, 14,
    1164-1167.
    22.K. Q. Peng, Y. J. Yan, S. P. Gao, and J. Zhu, “Dendrite-
    Assisted Growth of Silicon Nanowires in Electroless
    Metal Depositon,” Adv. Funct. Mater. 2003, 13, 127-132.
    23.K. Q. Peng, Z. P. Huang, and J. Zhu, “Fabrication of
    Large-Area Silicon Nanowire p-n Junction Diode Arrays,”
    Adv. Mater. 2004, 16, (1), 73-76.
    24.k. Q. Peng, Y. Wu, H. Fang, X. Y. Zhong, Y. Xu, and J.
    Zhu, “Uniform, Axial-Orientation Alignment of One-
    Dimensional Single-Crystal Silicon Nanostructure
    Arrays,” Angew. Chem. Int. Ed. 2005, 44, 2737-2742.
    25.K. Q. Peng, J. J. Hu, Y. J. Yan, Y. Wu, H. Fang, Y. Xiu,
    S. T. Lee, and J. Zhu, “Fabrication of Single-
    Crystalline Silicon Nanowires by Scratching a Silicon
    Surface with Catalytic Metal Particles,” Adv. Funct.
    Mater. 2006, 16, 387-394.
    26.C. Li, G. J. Fang, S. Sheng, Z. Q. Chen, J. b. Wang, S.
    A. Ma, and X. Z. Zhao, “Raman Spectroscopy and Field
    Electron Emission Properties of Aligned Silicon Nanowire
    Arrays,” Physica E 2005, 30, 169-173.
    27.K. Q. Peng, Y. Xu, Y. Wu, Y. J. Yan, S. T. Lee, and J.
    Zhu, “Aligned Single-Crystalline Si Nanowire Arrays for
    Photovoltaic Applications,” small 2005, 1, (11), 1062-
    1067.
    28.R. Q. Zhang, Y. Lifshitz, and S. T. Lee, “Oxide-
    Assisted Growth of Semiconducting Nanowires,” Adv.
    Mater. 2003, 15, 635-640.
    29.W. S. Shi, H. Y. Peng, N. Wang, C. S. Lee, R. Kalish,
    and S. T. Lee, “Free-standing Single Crystal Silicon
    Nanoribbons,” J. Am. Chem. Soc. 2001, 123, 11095-11096.
    30.R. S. Wagner and W. C. Ellis, “Vapor-Liquid-Solid
    Mechanism of Single Crystal Growth,” Appl. Phys. Lett.
    1964, 4, 89-90.
    31.J. Westwater, D. P. Gosain, S. Tomiya, and S. Usui,
    “Growth of Silicon Nanowires via Gold/Silane Vapor-
    Liquid-Solid Reaction,” J. Vac. Sci. Technol. B 1997,
    15, 554-557.
    32.Y. Y. Wu and P. D. Yang, “Germanium Nanowire Growth via
    Simple Vapor Transport,” Chem. Mater. 2000, 12, (605-
    607).
    33.C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu,
    J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng, and Y. F.
    Chen, “Catalytic Growth and Characterization fo Gallium
    Nitride Nanowires,” J. Am. Chem. Soc. 2001, 123, 2791-
    2798.
    34.Z. H. Wu, X. Y. Mei, D. Kim, M. Blumin, and H. E. Ruda,
    “Growth of Au-Catalyzed Ordered GaAs Nanowire Arrays by
    Molecular-Beam Epitaxy,” Appl. Phys. Lett. 2002, 81,
    5177-5179.
    35.Y. W. Wang, L. D. Zhang, C. H. Liang, G. Z. Wang, and X.
    S. Peng, “Catalytic Growth and Photoluminescence
    Properties of Semiconductor Single-Crystal ZnS
    Nanowires,” Chem. Phys. Lett. 2002, 357, 314-318.
    36.X. C. Wu and Y. R. Tao, “Growth of CdS Nanowires by
    Physical Vapor Depostion,” J. Cryst. Growth 2002, 242,
    309-312.
    37.M. H. Huang, Y. Y. Wu, H. Feick, N. Tran, E. Weber, and
    P. D. Yang, “Catalytic Growth of Zinc Oxide Nanowires
    by Vapor Transport,” Adv. Mater. 2001, 13, 113-116.
    38.D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z. G. Bai,
    J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, and S. Q.
    Feng, “Amorphous Silica Nanowires: Intensive Blue Light
    Emitters,” Appl. Phys. Lett. 1998, 73, 3076-3078.
    39.Y. F. Zhang, Y. H. Tang, N. Wang, C. S. Lee, I. Bello,
    and S. T. Lee, “Germanium Nanowires Sheathed with An
    Oxide Layer,” Phys. Rev. B 2000, 61, 4518-4521.
    40.S. T. Lee, Y. F. Zhang, N. Wang, Y. H. Tang, I. Bello,
    C. S. Lee, and Y. W. Chung, “Semiconductor Nanowires
    from oxides,” J. Mater. Res. 1999, 14, 4503.
    41.W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, and S. T.
    Lee, “Microstructures of Gallium Nitride Nanowires
    Synthesized by Oxide-Assisted Method,” Chem. Phys.
    Lett. 2001, 345, 377-380.
    42.W. S. Shi, H. Y. Peng, N. Wang, C. S. Lee, R. Kalish,
    and S. T. Lee, “Oxide-Assisted Growth and Optical
    Characterization of Gallium-Arsenide Nanowires,” Appl.
    Phys. Lett. 2001, 78, 3304-3306.
    43.J. Q. Hu, X. L. Ma, Z. Y. Xie, N. Wong, C. S. Lee, and
    S. T. Lee, “Characterization of Zinc Oxide Crystal
    Whiskers Grown by Thermal Evaporation,” Chem. Phys.
    Lett. 2001, 344, 97-100.
    44.K. Maex, “Silicides for integrated circuits: TiSi2 and
    CoSi2,” Mater. Sci. Eng. 1993, R11, 53.
    45.M. K. Datta, S. K. Pabi, and B. S. Murty, “Phase fields
    of nickel silicides obtained by mechanical alloying in
    the nanocrstalline state,” J. Appl. Phys. 2000, 87,
    8393-8400.
    46.J. Crofton, P. G. Mcmullin, J. R. Williams, M. J.
    Bozack, “High-temperature ohmic contact to n-type 6H-
    SiC using nickel,” J. Appl. Phys. 1995, 77, 1317-1319.
    47.M. K. Datta, S. K. Pabi, and B. S. Murty, “Thermal
    stability of nanocrystalline Ni silicides synthesized by
    mechanical alloying,” Mater. Sci. Eng. 2000, A284, 219- 225.
    48.G. Majni, M. Costato, and F. Panini, “The Growth
    Processes of Thin Film Silicides in Si/Ni Planar
    Systems,” Thin Solid Films 1985, 125, 71-78.
    49.K. N. Tu, W. K. Chu, and J. W. Mayer, “Structure and
    Growth Kinetics of Ni2Si of Silicon,” Thin Solid Films
    1975, 25, 403-413.
    50.J. O. Olowolafe, M.-A. Nicolet, and J. W. Mayer,
    “Influence of the Nature of the Si Substrate on Nickel
    Silicide Formed From Thin Ni Films,” Thin Solid Films
    1976, 38, 143-150.
    51.C. -D. Lien, M.-A. Nicolet, and S. S. Lau, “Kinetics of
    Silicides on Si<100> and Evaporated Silicon
    Substrates,” Thin Solid Films 1986, 143, 63-72.
    52.F. d'Heurle, C. S. Petersson, J. E. E. Baglin, S. J. La
    Placa, and C. Y. Wong, “Formation of thin films of
    NiSi: Metatable structure, diffusion mechanisms in
    intermetallic compounds,” J. Appl. Phys. 1984, 55,
    (12), 4208-4218.
    53.M. Levit, I. Grimberg, and B-Z. Weiss, “Morphology and
    kinetics of the interaction between Ni90Ti10 alloy thin
    film and 6H-SiC single crystal,” J. Mater. Res. 1998,
    13, 3247-3255.
    54.J. F. Lin, J. P. Bird, Z. He, P. A. Bennett, and D. J.
    Smith, “Signatures of quantum transport in self-
    assembled epitaxial nicke silicide nanowires,” Appl.
    Phys. Lett. 2004, 85, 281-283.
    55.Y. L. Chueh, L. J. Chou, S. L. Cheng, L. J. Chen, and C.
    J. Tsai, “Synthesis and characterization of metallic
    TaSi2 nanowires,” Appl. Phys. Lett. 2005, 87, 223113.
    56.C. A. Decker, R. Solanki, J. L. Freeouf, and J.
    R. Carruthers, “Directed growth of nickel silicide
    nanowires,” Appl. Phys. Lett. 2004, 84, 1389-1391.
    57.S. Y. Chen, and L. J. Chen, “Nitride-mediated epitaxy
    of self -assembled NiSi2 nanowires on (001)Si,” Appl.
    Phys. Lett. 2005, 87, 253111.
    58.M. Stevens, Z. He, D. J. Smith, and P. S. Bennent,
    “Structure and orientation of epitaxial titanium
    silicide nanowires determined by electron
    microdiffraction,” J. Appl. Phys. 2003, 93, 5670-5674.
    59.J. Nogami, B. Z. Liu, M. V. Katkov, C. Ohbuchi, and N.
    O. Birge, “Self-assembled rare-earth silicide nanowires
    on Si(100),” Phys. Rev. B 2001, 63, 233305.
    60.Y. Chen, D. A. Ohlberg, G. Medeiros-Ribeiro, A. Chang,
    and R. S. Williams, “Self-assembled growth of epitaxial
    erbium disilicide nanowires on silicon(001),” Appl.
    Phys. Lett. 2000, 76, 4004-4006.
    61.C. Preinesberger, S. K. Becker, S. Vandre, T. Kalka, and
    M. Dahne, “Structure of DySi2 nanowires on Si(001),”
    J. Appl. Phys. 2002, 91, 1695-1697.
    62.J. Kim, and W. A. Anderson, “Spontaneous nickel
    monosilicide nanowire formation by metal induced
    growth,” Thin Solid Films 2005, 483, 60-65.
    63.J. A. Kittl, D. A. Prinslow, P. P. Apte, and M. F. Pas,
    “Kinetics and nucleation mode of the C49 to C54 phase
    transformation in TiSi2 thin films on deep-sub-micron
    n+ type polycrystalline silicon lines,” Appl. Phys.
    Lett. 1995, 67, 2308-2310.
    64.G. B. Kim, D.-J. Yoo, H. K. Baik, J. -M. Myoung, S. M.
    Lee, S. H. Oh, and C. G. Park, “Improved thermal
    stability of Nisilicide on Si (100) through reactive
    deposition of Ni,” J. Vac. Sci. Technol. B 2003, 21,
    319-322.
    65.X. Q. Yan, H. J. Yuan, J. X. Wang, D. F. Liu, Z. P.
    Zhou, Y. Gao, L. Song, L. F. Liu, W. Y. Zhou, G. Wang,
    and S. S. Xie, “Synthesis and characerization of large
    amount of branched Ni2Si nanowires,” Appl. Phys. A
    2004, 79, 1853-1856.
    66.K. S. Lee, Y. H. Mo, K. S. Nahm, H. W. Shim, E. K. Suh,
    J. R. Kim, and J. J. Kim, “Anomalous growth and
    characterization of carbon-coated nickel silicide
    nanowires,” Chem. Phys. Lett. 2004, 384, 215-218.
    67.Z. Zhang, P.-E. Hellstrom, M. Ostling, and S. L. Zhang,
    “Electrically robust ultralong nanowires of NiSi, Ni2Si,
    and Ni31Si12,” Appl. Phys. Lett. 2006, 88, 043104.
    68.Y. Wu, J. Xiang, C. Yang, W. Lu, and C. M. Lieber,
    “Single-crystal metallic nanowires and
    metal/semiconductor nanowire heterostructures,” Nature
    2004, 430, 61-65.
    69.L. Dong, J. Bush, V. Chirayos, R. Solanki, and J. Jiao,
    “Dielectrophoretically Controlled Fabrication of Single-
    Crytal Nickel Silicide Nanowire Interconnects,” Nano
    Lett. 2005, 5, 2112-2115.
    70.J. M. Gibson, J. L. Batstone, R. T. Tung, and F. C.
    Unterwald, “Origin of A- or B- Type NiSi2 Determined by
    In Situ Transmission Electron Microscopy and Diffraction
    during Growth,” Phys. Rev. Lett. 1988, 60, 1158-1161.
    71.M. W. Kleinschmit, M. Yeadon, and J. M. Gibson,
    “Nucleation of single-crystal CoSi2 with oxide-mediated
    epitaxy,” Appl. Phys. Lett. 1999, 75, 3288-3290.
    72.T. Yokota, M. Murayama, and J. M. Howe, “In situ
    transmission Electron Microscopy Investigation of
    Melting in Submicron Al-Si Slloy Particles under
    Electron-Beam Irradiation,” Phys. Rev. Lett. 2003, 91,
    265504.
    73.M. Tanaka, F. Chu, M. Shimojo, M. Takeguchi, K.
    Mitsuishi, and K. Furuya, “Position-and size-controlled
    fabrication of iron silicide nanorods by electron-beam-
    induced deposition using an ultrahigh-vacuum
    transmission electron microscope,” Appl. Phys. Lett.
    2005, 86, 138104.
    74.V. Teodorescu, L. Nistor, H. Bender, A. Steegen, A.
    Lauwers, K. Maex, and J. V. Landuyt, “In situ
    transmission electron microscopy study of Nisilicide
    Phases formed on (001) Si active lines,” J. Appl. Phys.
    2001, 90, 167-174.
    75.M. Aizawa, A. M. Cooper, M. Mala, and J. M. Buriak,
    “Silver Nano-Inukshuks on Germanium,” Nano Lett. 2005,
    5, 815-819.
    76.K. Q. Peng, and J. Zhu, “Simultaneous gold deposition
    and formation of silicon nanowire,” J. Electroanal.
    Chem. 2003, 558, 35-39.
    77. J. A. Kittl, A. Lauwers, M. A. Pawlak, M. J. H. van
    Dal, A. Veloso, K. G. Anil, G. Pourtois, C. Demeurisse,
    T. Schram, B. Brijs, M. de Potter, C. Vrancken, and K.
    Maex, “Ni fully silicide gates for 45 nm CMOS
    applications,” Microelecron. Eng. 2005, 82, 441-448.
    78. K. N. Tu, “Analysis of marker motion in thin-film
    silicide formation,” J. Appl. Phys. 1977, 48, 3379-3382.
    79. Y. Ding and Z. L. Wang, “Structure Analysis of
    Nanowires and Nanobelts by Transmission Electron
    Microscopy,” J. Phys. Chem. B 2004, 108, 12280-12291.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE