簡易檢索 / 詳目顯示

研究生: 鄭堯友
Cheng, Yao-You
論文名稱: 乳房鈣化點光聲陣列造影之可行性研究
Photoacoustic Array Imaging of Breast Calcifications: Feasibility Study
指導教授: 李夢麟
Li, Meng-Lin
口試委員: 沈哲州
葉秩光
劉浩澧
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 75
中文關鍵詞: 光聲造影乳癌鈣化
外文關鍵詞: Photoacoustic Imaging, Breast Cancer, Calcification
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中我們基於醫用超音波陣列影像系統開發高穿透深度之光聲陣列造影系統,並以鈣化點仿體實驗驗證此整合式之光聲造影系統於乳房鈣化點偵測的可行性及造影穿透深度。實驗以伴隨惡性腫瘤之成份的羥基磷灰石(hydroxyapatite,HA)鈣化顆粒的吉利丁與雞胸肉仿體為掃瞄標的,使用此整合式之光聲影像系統,以5 MHz陣列超音波探頭搭配最佳化之700 nm光聲激發波長,以側向式(Sideward mode)與逆向式(Backward mode)對仿體鈣化點進行造影。並針對逆向式造影模式設計出光聲探頭,以蒙地卡羅模擬來最佳化光纖束與超音波探頭之配置,並與側向式造影做為比較。系統於3 cm深度的軸向解析度為 0.54 mm,橫向解析度為0.35 mm,elevational解析度估計為1.25 mm,目前成像速度最高可達10 frames/sec。實驗數據經由延遲相加波束合成技術(delay and sum, DAS)重建影像與使用可適性同調權重技術(coherence factor weighting, CF weighting)來提高影像之對比度,由目前實驗結果,此系統可取得0.3 mm-0.5 mm之鈣化點影像。針對0.5 mm鈣化點,在雞胸肉3 cm深度中影像訊雜比可達14 dB,可與乳房中之血液光聲訊號相比擬,我們亦將超音波影像與光聲影像疊合成為雙模態影像,可加強鈣化點影像之判讀以及作為乳房鈣化點切片之影像導引。另外,我們分析鈣化點的訊雜比,計算出此陣列光聲造影系統對於0.5 mm之鈣化點於真實乳房中的可偵測深度為3.0-3.5 cm,符合實際臨床乳房鈣化點可能出現之深度0.6 cm-3.0 cm,並提出雙波長切換法來嘗試分辨乳房中血液與鈣化點的訊號,結果顯示為可行的。未來希望能取得臨床的鈣化點來做進一步的驗證,也希望能提供另一種代表良性的鈣化點草酸鈣(calcium oxalate,COD)與HA的分辨法,以及利用超音波都卜勒來提供影像上血液資訊。


    In this study, based on a medical ultrasound array imaging platform, we developed a high penetration photoacoustic (PA) array imaging system for visualization of breast calcifications. Phantom studies were used to verify the imaging capability and penetration depth of the developed PA system for calcification imaging. In our phantom studies, intralipid and chicken breast phantoms embedded with different-sized hydroxyapatite (HA) particles, major components of breast calcification associated with malignant breast cancer, were imaged. A laser at 700 nm was used for photoacoustic excitation and imaging was performed in sideward mode and backward mode. A PA transducer made by integrating the fiber bundle with the ultrasound transducer was applied for backward-mode photoacoustic signal detection; its configuration was optimized through Monte Carlo simulation. Currently, the axial, lateral, and elevational resolution of this developed PA array imaging system are 0.54 mm, 0.35 mm, and 1.25 mm, respectively, and its highest frame rate is 10 frames/sec, which is limited by the laser pulse rate. The image was reconstructed by delay-and-sum algorithm while contrast enhancement was performed by coherence factor weighting. Experimental results demonstrated that this system is capable of calcification imaging of 0.3 - 0.5 mm HA particles. For the 0.5 mm HA particles at depth of 3 cm, the imaging signal-to-noise ratio was about 14 dB, comparable to that of blood. We then developed a dual-modal PA and ultrasound imaging to further enhance the calcification imaging capability, which may facilitate needle biopsy guidance for clinical use. Additionally, we analyzed the signal-to-noise ratio of HA and calculated the capable detection depth of 0.5-mm HA in human breast at approximately 3.0 - 3.5 cm. This is compatible with clinical applications, as calcifications are usually found at a depth of 0.6 – 3.0 cm. Moreover, based on the distinct optical absorption spectra of blood and HA in the near infrared wavelength range, we can also use PA signals from two selected wavelengths to differentiate the HA from the blood. Future work will focus on further validation of photoacoustic imaging of clinical breast calcifications. In addition, we wish to distinguish between calcium oxalate (COD) and HA, which are the components of breast calcifications associated with benign and malignant breast tumor, respectively. We also want to provide blood-flow information on our image by using Doppler ultrasound.

    目錄 摘要 I Abstract III 目錄 IV 圖目錄 X 表目錄 XI 第一章 緒論 1 1.1乳癌與鈣化點之關係 1 1.2現有之乳房影像系統 3 1.2.1 X光乳房攝影 3 1.2.2 乳房超音波 5 1.3光聲造影簡介與先期臨床試驗 7 1.3.1光聲成像原理與特點 7 1.3.2現有影像系統與光聲造影之比較 8 1.3.3先期臨床試驗 9 1.3.4先期乳房鈣化點仿體驗證 14 1.4研究動機與目的 17 1.5論文架構 18 第二章 系統架構 19 2.1光聲陣列影像系統 19 2.2光路與超音波探頭之配置 21 2.2.1側向式 22 2.2.2逆向式 22 2.2.3蒙地卡羅法模擬 25 2.3激發波長之最佳化 31 2.4光聲造影的超音波探頭頻率之選擇 32 2.5影像重建與訊號處理 35 2.5.1影像重建與訊號處理流程 36 2.5.2 延遲相加波束合成技術 37 2.5.3 可適性同調權重技術 41 2.6仿體 42 2.6.1 仿體製作 43 2.6.2 仿體光學特性之測量 45 第三章 實驗結果 48 3.1波長之最佳化 48 3.1.1羥基磷灰石光聲光譜 48 3.1.2血液與羥基磷灰石光聲光譜之比較 48 3.1.3鈣化點光聲訊號來源探討 53 3.2鈣化點仿體實驗結果與討論 54 3.2.1 Intralipid仿體 54 3.2.2雞胸肉仿體 56 3.2.3討論 59 3.3 側向式與逆向式之比較 63 3.4 血液與鈣化點光聲光譜辨別法 65 第四章 結論與未來工作 69 4.1結論 69 4.2未來工作 71

    1. http://www.cancer.org/Cancer/BreastCancer/index?ssSourceSiteId=null
    2. 行政院衛生署, 99 年死因統計分析: 13–17 (2010)
    3. M. P. Morgan, M.M. Cooke, G.M. McCarthy, ”Microcalcifications Associated with Breast Cancer: An Epiphenomenon or Biologically Significant Feature of Selected Tumors ? ” J. Mammary Gland. Biol. Neoplasia. 10: 181–187 (2005)
    4. 蔡明芳, 鍾瑞容,莊茂德, 乳房檢查報告的判讀─簡介BI-RADS, 基層醫學. 23: 384–386 (2008)
    5. W. A. Berg, L. Gutierrez, M. S. NessAiver, W. B. Carter, M. Bhargavan, R. S. Lewis, and O. B. Ioffe,“Diagnostic Accuracy of Mammography, Clinical Examination, US, and MR Imaging in Preoperative Assessment of Breast Cancer,” Radiology, 233: 830–849 (2004)
    6. http://tw.myblog.yahoo.com/breastcancer-home/article?mid=54
    7. http://www.mdesign.tw/display/breast/qa.php?xid=4
    8. http://www.chimei.org.tw/main/right/right01/cmh_department/57510/%A8%C5%A9%D0%B8%EA%B0T%BA%F4%AD%B6/exam_biopsy.html
    9. http://www.lshosp.com.tw/chian/Cancer_Medicine/home_01.htm
    10. C. C. Chang, M. L. Li, “Quantitative Photoacoustic Measurement of Blood Oxygen Saturation” ,NTHUEE, Master thesis (2001)
    11. C. Kim, T. N. Erpelding, L. Jankovic and L.V. Wang, “Performance Benchmarks of an Array-Based Hand-Held Photoacoustic Probe Adapted from a Clinical Ultrasound System for Non-Invasive Sentinel Lymph Node Imaging,” Phil. Trans. R. Soc. 369: 4644–4650 (2011)
    12. X. J. Rong, C. C. Shaw, D. A. Johnston, M. R. Lemacks, X. Liu, G. J. Whitman, M. J. Dryden, T. W. Stephens, S. K. Thompson, K. T. Krugh, C. J. Lai, "Microcalcification Detectability for Four Mammographic Detectors: Flat-Panel, CCD, CR, and Screen/Film," Med. Phys. 29: 2052–2061 (2002)
    13. J. R. Cleverley, A. R. Jackson, A. C. Bateman, "Pre-Operative Localization of Breast Microcalcification Using High-frequency Ultrasound," Clinical Radiology. 52: 924–926 (1997)
    14. R. A. Kruger, R. B. Lam, D. R. Reinecke, S. P. D. Rio, R. P. Doyle, “Photoacoustic Angiography of the Breast,” Med. Phys. 37: 6096 (2010)
    15. S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, A. A. Oraevsky, "Laser Optoacoustic Imaging System for Detection of Breast Cancer," J. Biomed. Opt. 14: 024007-1–14 (2009)
    16. M. Heijblom, D. Piras, W. Xia, J.C.G. van Hespen, J.M. Klaase, F.M. van den Engh, T.G. van Leeuwen, W. Steenbergen, and S. Manohar, “Visualizing Breast Cancer Using the Twente Photoacoustic Mammoscope: What Do We Learn from Twelve New Patient Measurements?”, Opt. Exp. 20: 11582–11597 (2012)
    17. T. Kitai, M. Torii, T. Sugie, M. Toi, S. Kanao, Y. Mikami, T. Shiina, "Photoacoustic Mammography: Initial Clinical Results", Breast Cancer, (10.1007/s12282-012-0363-0) (Published online)
    18. D. R. Leff, O. J. Warren, L.C. Enfield, J. Hebden, G.Z. Yang, A. Darzi , ”Diffuse Optical Imaging of the Healthy and Diseased Breast: Asystematic Review,” Breast Cancer Res Treat. 08: 9–22 (2008)
    19. T. C. Hsiaoa, P. H. Wang, C. T. Fan, Y. Y. Cheng, M. L. Li, “Visualization of micro-calcifications using photoacoustic imaging:feasibility study,” Proc. of SPIE. 7899: 78992U-1-5 (2011)
    20. P. H. Wang, M. L. Li, “High Frequency Photoacoustic Imaging System and Its Application in Small Animal Imaging” ,NTHUEE, Master thesis (2009)
    21. J. Su, A. Karpiouk, B. Wang, S. Emelianov, "Photoacoustic Imaging of Clinical Metal Needles in Tissue," J Biomed. Opt. 15: 021309-1–9 (2010)
    22. S. L. Wang , P. C. Li, “MVDR-Based Coherence Weighting for High-Frame-Rate Adaptive Imaging,” IEEE Trans. Ultrasonic Ferroelectr. Freq. Contr. 56: 2097–2110 (2009)
    23. C. Kim, T. N. Erpelding, L. Jankovic, M. D. Pashley, L. V. Wang, “Deeply Penetrating in vivo Photoacoustic Imaging Using a Clinical Ultrasound Array System”, Biomed. Opt. Express. 1: 278–284 (2010)
    24. http://oilab.seas.wustl.edu/mc.html
    25. L. H. Wang, S. L. Jacques, L. Q. Zheng, "MCML - Monte Carlo Modeling of Light Transport in Multi-Layered Tissues," Computer Methods and Programs in Biomedicine. 47: 131–146 (1995).
    26. P. Taroni, A. Pifferi, A. Torricelli, D. Comelli, R. Cubeddu , “In vivo Absorption and Scattering Spectroscopy of Biological Tissues,” Photochem. Photobiol. Sci. 2: 124–129 (2003)
    27. T. Svensson, J. Swartling, P. Taroni, A. Torricelli, P. Lindblom, C. Ingvar, S. A. Engels , “Characterization of Normal Breast Tissue Heterogeneity Using Time-Resolved Near-Infrared Spectroscopy ” ,Phys. Med. Biol. 50: 2559–2571 (2005)
    28. L. V. Wang , H. I. Wu, “Biomedical Optics: Principles and Imaging”, Wiley.
    29. G. J. Cheng, C. Ye, “Experiment, Thermal Simulation, and Characterizations on Transmission Laser Coating of Hydroxyapatite on Metal Implant,” J Biomed Mater Res A. 92: 70-79 (2010)
    30. T. J. Allen, P. C. Beard, “Optimising the Detection Parameters for Deep Tissue Photoacoustic Imaging,” Proc. of SPIE. 8223: 82230-1-7 (2012)
    31. http://www.broadsound.com.tw/AT8L125.htm
    32. P. C. Li, M. L. Li, “Adaptive Imaging Using the Generalized Coherence Factor. Ultrasonics,” Ferroelectrics and Frequency Control, IEEE Transactions on. 50: 128-141 (2003)
    33. G. Marquez, L. H. Wang, S. P. Lin, J. A. Schwartz, and S. L. Thomsen, “Anisotropy in the Absorption and Scattering Spectra of Chicken Breast Tissue”, Appl. Opt. 37: 798 (1998).
    34. http://omlc.ogi.edu/software/iad/
    35. C. C. Chang, M. L. Li, “Quantitative Photoacoustic Measurement of Blood Oxygen Saturation” , NTHUEE, Master thesis (2010)
    36. http://omlc.ogi.edu/spectra/hemoglobin/index.html
    37. S. Parker, “Laser-Tissue Interaction,” British Dental Journal. 202: 73–81 (2007)
    38. B. T. Cox, J. G. Laufer and P. C. Beard, “The Challenges for Quantitative Photoacoustic Imaging,” Proc. of SPIE. 7177: 717713-1–9 (2009)
    39. T. Li and R. J. Dewhurst, “Photoacoustic Imaging in Both Soft and Hard Biological Tissue,” Journal of Physics: Conference Series. 214: 012028 (2010)
    40. N. Parmar, M.C. Kolios, "An Investigation of the Use of Transmission Ultrasound to Measure Acoustic Attenuation Changes in Thermal Therapy," Med Bio Eng Comput. 44: 583–591 (2006)
    41. E. L. Madsen, J. A. Zagebiski, R. A. Banjavie, R. E. Jutila, "Tissue Mimicking Materials for Ultrasound Phantoms," Med. Phys. 5: 391–394 (1978)
    42. P. D. Tyreus, C. Diederich, "Two-Dimensional Acoustic Attenuation Mapping of High-Temperature Interstitial Ultrasound Lesions," Phys. Med. Biol. 49: 533–546 (2004)
    43. J. Kang, E. K. Kim, J. Y. Kwak, Y. Yoo, T. K. Song, J. H. Chang, “Optimal Laser Wavelength for Photoacoustic Imaging of Breast Microcalcifications,” Appl. Phys. Lett. 99: 153702(2011)
    44. K. R. Bhushan, E. Tanaka, J. V. Frangioni,"Synthesis of Conjugatable Bisphosphonates for Molecular Imaging of Large Animals," Angew Chem Int Ed Engl. 46: 7969–7971. (2007)
    45. R. E. Lenkinski, M. Ahmed, A. Zaheer, J. V. Frangioni, S. N. Goldberg,"Near-infrared Fluorescence Imaging of Microcalcification in an Animal Model of Breast Cancer," Acad Radiol. 10:1159–1164 (2003)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE