簡易檢索 / 詳目顯示

研究生: 張書維
Jang, Shu-Uei
論文名稱: 氣動式微閥門晶片輔助微量多氯聯苯與重金屬之快速分析研究
Multilayer microfluidic chip with pneumatic microvalves assisting for rapid analysis of trace polychlorinated biphenyls and heavy metals
指導教授: 凌永健
Ling, Yong-Chien
口試委員: 黃賢達
王先知
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 62
中文關鍵詞: 微晶片
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 環境中重金屬與多氯聯苯會對人體健康及自然生態造成極大的影響,傳統重金屬與多氯聯苯分析方法多費時、費力、費劑。微流體實驗室晶片(Lab on a Chip) 微小化研究和操作尺度,在化學分析的應用極廣,從樣品前處理、樣品分離、試劑反應、至偵測等複雜功能,整合前述步驟於一小面積微流體晶片上,減少試劑用量,加快分析速度,達到綠色分析化學目標。本實驗利用工程設計整合氣動式微閥門晶片測試新穎材料如石墨烯(graphene)和磁性奈米粒子(MNPs-PAA),進行多氯聯苯與重金屬(Mn2+, Co2+, Cu2+, Pb2+ )之吸/脫附研究。使用非光阻式之壓克力板為母模,利用自動化控制氣動式微流閥系統,以操控吸/脫附反應。實驗結果顯示,MNPs-PAA可應用在微流體晶上,並證明graphene材料從成功製造出以來首次對PCBs之吸附,較傳統方法快速、低廉、環保,有助於綠色的綠色奈米分析化學的推廣。


    1.1 INTRODUCTION - 8 - 1.2 RESEARCH OBJECTIVE - 10 - 1.2.1 Lab-on-chip system - 10 - 1.2.2 Motivation and objectives - 11 - 1.3 LITERATURE SURVEY - 12 - 1.3.1 Pneumatic PDMS microvalves - 12 - 1.3.1.1 The displacement of PDMS membrane - 14 - 1.4 EXPERIMENTAL SECTION - 15 - 1.4.1 Materials and reagents - 15 - 1.4.1.1 Synthesis of materials - 16 - 1.4.1.2 PDMS characteristics - 17 - 1.4.2 Experimental apparatus - 18 - 1.4.3 Experimental procedure - 19 - 1.4.3.1 Design - 19 - 1.4.3.2 Fabrication - 22 - 1.4.3.3 Chromatography and mass analysis - 24 - 1.4.3.4 Detection process and control system - 24 - 1.5 RESULTS AND DISCUSSION - 27 - 1.5.1 Characterization of PMMC - 27 - 1.5.1.1 Performance of pneumatic microvalve - 27 - 1.5.1.2 The flow rate of PMMC - 30 - 1.5.2 Determination of PCBs - 31 - 1.5.2.1 Adsorbents’ performance comparison - 34 - 1.5.3 Material characterization - 36 - 1.5.4 Adsorption simulation of PCBs on RGO - 38 - 1.6 CONCLUSIONS - 41 - 1.7 REFERENCES - 42 - 2.1 INTRODUCTION - 44 - 2.2 EXPERIMENTAL SECTION - 47 - 2.2.1 Materials and reagents - 47 - 2.2.1.1 Preparation and immobilization of MNPs-PAA - 47 - 2.2.2 Experimental apparatus - 48 - 2.2.3 Experimental procedure - 49 - 2.2.3.1 Design - 49 - 2.2.3.2 Fabrication - 51 - 2.2.3.3 Detection process and control system - 51 - 2.3 RESULTS AND DISCUSSION - 54 - 2.3.1 The flow rate of PMMC - 54 - 2.3.2 Determination of heavy metal ions - 55 - 2.3.2.1 On-line pre-treatment - 56 - 2.3.3 Material characterization - 58 - 2.4 CONCLUSIONS - 60 - 2.5 REFERENCES - 61 -

    Chapter1
    1. Caliper Technologies Corp., www.calipertech.com.
    2. A. Manz, N. Graber and H. M. Widmer, Sensors and Actuators B: Chemical, 1990, 1, 244-248.
    3. H. Becker and C. Gärtner, ELECTROPHORESIS, 2000, 21, 12-26.
    4. S. Zhao, H. Cong and T. Pan, Lab on a Chip, 2009, 9, 1128.
    5. K. Croes, K. Van Langenhove, M. Elskens, M. Desmedt, E. Roekens, A. Kotz, M. S. Denison and W. Baeyens, Chemosphere, 2011, 82, 718-724.
    6. D. Wang and Q. X. Li, Mass Spectrom Rev, 2010, 29, 737-775.
    7. C. Basheer, G. Balaji, S. H. Chua, S. Valiyaveettil and H. K. Lee, Journal of Chromatography A, 2011, 1218, 654-661.
    8. F. J. Santos and M. T. Galceran, TrAC Trends in Analytical Chemistry, 2002, 21, 672-685.
    9. W. Y. Hsu, W. D. Lin, W. L. Hwu, C. C. Lai and F. J. Tsai, Anal Chem, 2010, 82, 6814-6820.
    10. Z. G. Yu, Z. Qin, H. R. Ji, X. Du, Y. H. Chen, P. Pan, H. Wang and Y. Y. Liu, Chromatographia, 2010, 72, 1073-1081.
    11. S. Garaj, W. Hubbard, A. Reina, J. Kong, D. Branton and J. A. Golovchenko, Nature, 2010, 467, 190-U173.
    12. A. K. Geim, Science, 2009, 324, 1530-1534.
    13. A. Mechlinska, L. Wolska and J. Namiesnik, Trac-Trend Anal Chem, 2010, 29, 820-831.
    14. A. V. Herrera-Herrera, M. Asensio-Ramos, J. Hernandez-Borges and M. A. Rodriguez-Delgado, Trac-Trend Anal Chem, 2010, 29, 728-751.
    15. M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer and S. R. Quake, Science, 2000, 288, 113-116.
    16. C. Zhang, D. Xing and Y. Li, Biotechnology Advances, 2007, 25, 483-514.
    17. K. Hosokawa and R. Maeda, Journal of Micromechanics and Microengineering, 2000, 10, 415.
    18. J. Go, Sensors and Actuators A: Physical, 2004, 114, 438-444.
    19. L. He, International Journal of Solids and Structures, 2004, 41, 847-857.
    20. C. Wang and G. Lee, Biosensors and Bioelectronics, 2005, 21, 419-425.
    21. S. D. Gillmor, B. J. Larson, J. M. Braun, C. E. Mason, L. E. Cruz-Barba, F. Denes and M. G. Lagally, Low-contact-angle polydimethyl siloxane (PDMS) membranes for fabricating micro-bioarrays, 2002.
    22. B. E. Slentz, N. A. Penner and F. E. Regnier, Journal of Chromatography A, 2002, 948, 225-233.
    23. S.-Y. Yang, J.-L. Lin and G.-B. Lee, Journal of Micromechanics and Microengineering, 2009, 19, 035020.
    24. V. M. Abraham and J. B. C. Lynn, Journal of Chromatography A, 1997, 790, 131-141.
    Chapter2
    1. A. E. Holliday and D. Beauchemin, Journal of Analytical Atomic Spectrometry, 2003, 18, 1109-1112.
    2. O. T. Butler, W. R. L. Cairns, J. M. Cook and C. M. Davidson, Journal of Analytical Atomic Spectrometry, 2010, 25, 103-141.
    3. J. H. Wang and E. H. Hansen, Trac-Trend Anal Chem, 2003, 22, 836-846.
    4. P. L. Lee, Y. C. Sun and Y. C. Ling, Journal of Analytical Atomic Spectrometry, 2009, 24, 320-327.
    5. M. Murakami and N. Furuta, Analytica Chimica Acta, 2006, 556, 423-429.
    6. L. Marle and G. M. Greenway, Trac-Trend Anal Chem, 2005, 24, 795-802.
    7. G. Pearson and G. Greenway, J. Anal. Atom. Spectrom., 2007, 22, 657-662.
    8. H. Becker and C. Gartner, Electrophoresis, 2000, 21, 12-26.
    9. B. S. Ebarvia, C. A. Binag and F. Sevilla, Analytical and Bioanalytical Chemistry, 2004, 378, 1331-1337.
    10. Q. Zhang, S. Zeng, B. Lin and J. Qin, J Mater Chem, 2011, 21, 2466-2469.
    11. Y. Wang, M. L. Chen and J. H. Wang, Journal of Analytical Atomic Spectrometry, 2006, 21, 535-538.
    12. E. H. Hansen and M. Miro, Trac-Trend Anal Chem, 2007, 26, 18-26.
    13. F. A. Li, J. L. Huang, S. Y. Shen, C. W. Wang and G. R. Her, Anal Chem, 2009, 81, 2810-2814.
    14. M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer and S. R. Quake, Science, 2000, 288, 113-116.
    15. C. Zhang, D. Xing and Y. Li, Biotechnology Advances, 2007, 25, 483-514.
    16. N. Godino, D. Snakenborg, J. P. Kutter, J. Emneus, M. F. Hansen, F. X. Munoz and F. J. del Campo, Microfluidics and Nanofluidics, 2010, 8, 393-402.
    17. Y. J. Xu, G. Weinberg, X. Liu, O. Timpe, R. Schlogl and D. S. Su, Adv Funct Mater, 2008, 18, 3613-3619.
    18. J. S. Hu, L. S. Zhong, W. G. Song and L. J. Wan, Adv Mater, 2008, 20, 2977-2982.
    19. Y. Liu, Y. Li and X. P. Yan, Adv Funct Mater, 2008, 18, 1536-1543.
    20. K. Ghule, A. V. Ghule, B. J. Chen and Y. C. Ling, Green Chem, 2006, 8, 1034-1041.
    21. D. Kara, A. Fisher and S. J. Hill, Analyst, 2006, 131, 1232-1240.
    22. S. D. Cekic, H. Filik and R. Apak, Analytica Chimica Acta, 2004, 505, 15-24.
    23. A. Ramesh, K. R. Mohan and K. Seshaiah, Talanta, 2002, 57, 243-252.
    24. W. Bashir and B. Paull, Journal of Chromatography A, 2002, 942, 73-82.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE