研究生: |
楊培銘 Pei-Ming Yang |
---|---|
論文名稱: |
鎘誘發細胞壞死之機制及其防護作用的研究 Cadmium-Induced Necrosis: Mechanism and Protection |
指導教授: |
林立元
Lih-Yuan Lin |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 生命科學系 Department of Life Sciences |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 143 |
中文關鍵詞: | 鎘 、G2/M停滯 、細胞壞死 、活性氧物質 |
外文關鍵詞: | Cadmium, G2/M arrest, Necrosis, Reactive Oxygen Species |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鎘化合物是普遍的環境污染物,且被歸類為人類致癌物,但目前對於鎘致毒機制仍未完全明瞭。本研究利用中國倉鼠卵巢細胞研究鎘造成的細胞毒性,以細胞計數和BrdU嵌入法分析細胞生長,結果發現當處理低於0.4 μM鎘24小時對細胞增生無影響,超過0.4 μM鎘則隨著劑量增加抑制細胞生長。以MTT試驗分析細胞存活率發現,鎘造成50%致死率的劑量約為4.6 μM鎘24小時。流式細胞儀分析發現,0.8到2 μM鎘造成細胞G2/M 停滯,而大於2 μM鎘造成細胞壞死,加入細胞壞死抑制劑 (necrostatin-1, Nec-1) 可以抑制死亡。有絲分裂指數分析發現,1 μM鎘造成約6.5%細胞位於M期,且細胞中Cdk1活性有明顯增加。當以1 μM鎘處理同步化在G1/S交界期之細胞,S期進行受到延遲,之後停滯在G2/M期;而以1 μM鎘處理同步化在G2期之細胞,細胞會通過G2/M與G1期,接著逐漸停滯在S期。以原子吸收光譜儀分析細胞中鎘含量,發現只有當細胞內鎘累積量在7.5-17.5 ng/106 cells時,才會造成細胞停滯在G2/M期。
由於活性氧物質對於鎘毒性有很大的關連,我們研究鎘造成細胞中活性氧物質增加與G2/M停滯或細胞壞死之間的關係。處理1或4 μM鎘不同時間後,分析細胞中活性氧物質,結果發現1 μM鎘處理到24小時,而4 μM鎘處理到8小時之後,細胞中活性氧物質逐漸增加。處理抗氧化劑 (BHA) 可以抑制活性氧物質的增加與細胞壞死,但無法降低G2/M比例,代表鎘透過活性氧物質產生造成細胞壞死,而非G2/M停滯。但處理另一種抗氧化劑 (EUK-8,是一種SOD/catalase模仿劑) 則發現,可以抑制鎘造成G2/M停滯與細胞壞死。分析細胞中金屬含量後發現,EUK-8可以抑制鎘進入細胞,但並非透過促進鎘從細胞中釋放。EUK-8是錳與salen形成的金屬複合物,其中錳同樣有效抑制鎘進入細胞及其造成之毒性,但salen卻會使細胞膜通透性增加,而促進鎘進入細胞及其毒性,以電子順磁共振光譜分析EUK-8中所含的自由錳離子只有約0.09%,此劑量錳離子並無法抑制鎘造成G2/M停滯,代表是EUK-8本身抑制鎘毒性。
由於鎘造成細胞壞死是較顯著的毒性效應,因此我們進一步探討其機制。分析細胞中鈣離子濃度後發現4 μM鎘會造成鈣離子濃度的增加。處理細胞中鈣離子螯合劑 (BAPTA-AM) 可以完全抑制鈣離子增加與細胞壞死的現象,代表鎘造成細胞壞死主要是透過鈣離子增加的作用。Calpain是一種需鈣型蛋白酶,分析calpain活性後發現鎘會造成calpain的活化。處理calpain抑制劑 (calpeptin) 或表現抑制蛋白 (calpastatin)可以部分抑制鎘造成細胞壞死。其中,處理BAPTA-AM可以抑制鎘造成活性氧物質產生,但calpeptin則不能,代表calpain與活性氧物質是鈣離子下游獨立平行的訊息途徑。已知粒線體通透性轉換與細胞壞死有關,其發生會造成粒線體膜電位下降,測量粒線體膜電位後發現鎘會造成粒線體膜電位的下降,處理粒線體通透性轉換抑制劑 (cyclosporin A, CsA) 可以抑制此現象以及細胞壞死,而處理BAPTA-AM與calpeptin也可以抑制鎘造成粒線體膜電位下降。NF-κB是促進細胞存活的轉錄因子,利用報導基因分析發現,鎘會導致NF-κB基礎活性下降,而此現象可以被BAPTA-AM與BHA所抑制。因此,鎘造成細胞壞死可以分別透過calpain活化造成粒線體通透性轉換,以及活性氧物質產生而抑制NF-κB活性。此外,Nec-1除了可以阻斷calpain與粒線體通透性轉換之訊息途徑,也可以活化NF-κB,以降低細胞壞死的比例。
Cadmium (Cd) compounds are ubiquitous environmental contaminants that have been classified as human carcinogens. However, the toxicological mechanisms of Cd are not well understood. In this study, we investigated the cytotoxicity of Cd toward Chinese hamster ovary (CHO) K1 cells. Analysis of cell growth using cell counting and BrdU incorporation indicated that there was no difference in growth rate when less than 0.4 μM Cd was given within 24 h. A dose-dependent reduction of cell proliferation was observed when more than 0.4 μM Cd was added. Flow cytometric analysis indicated that cells were arrested at G2/M phase when 0.8 to 2 μM Cd was given for 24 h. However, necrosis were induced when more than 2 μM Cd was administered. This effect can be efficiently inhibited by a programmed necrosis inhibitor, necrostatin-1 (Nec-1). Despite the fact that Cd treatment arrested cells mainly in the G2 but not M phase, an elevation in the cyclin-dependent kinase 1 (Cdk1) activity was found. Analysis of intracellular Cd content showed that only cells received 7.5 to 17.5 ng/106 cells progressed and retarded at G2/M phase. When synchronized cells at G1/S border were treated with 1 μM Cd, cells were delayed at the S phase progression and then arrested at G2/M phase; When synchronized G2 cells were treated, cells passed through G2/M and G1 phase, and then accumulated at S phase.
Since Cd stimulated the production of reactive oxygen species (ROS) and leads to cell damage, we investigated the involvement of ROS with necrosis. Intracellular ROS level increased after treatment with 1 μM for 24 h or 4 μM for 8 h. Antioxidants (BHA) that effectively reduced ROS production did not alter the G2/M arrest but inhibit necrosis after Cd treatment. This finding suggests that the Cd-induced ROS leads to cell necrosis but not G2/M arrest. Interestingly, we found that EUK-8, a SOD/catalase mimics, could rescue cells from G2/M arrest and necrosis. Analysis of intracellular Cd content indicated that EUK-8 reduced cellular Cd accumulation via blockage of Cd uptake into cells rather than promotion of Cd release from cells. EUK-8 is a Mn-salen complex. Mn decreased the uptake and cytotoxicity of Cd, while salen perturbed the membrane integrity and increased the uptake and cytotoxicity of Cd. Electronic paramagnetic resonance (EPR) spectrophotometric analysis indicated that only 0.09% of free manganese (Mn2+) dissolved in EUK-8 solution, which did not inhibit Cd-induced G2/M arrest. This finding indicates that it is EUK-8 itself that reduces Cd toxicity.
Because Cd-induced necrosis was a predominantly toxic effect in CHO cells, we further studied the mechanisms involved. Analysis of intracellular calcium (Ca2+) level indicated that 4 μM Cd caused Ca2+-overload. Intracellular Ca2+ chelator (BAPTA-AM) completely inhibited Cd-induced Ca2+-overload and necrosis. These findings suggests that Ca2+-overload played the most dominant role on Cd-induced necrosis. Calpain is a Ca2+-dependent protease. Analysis of calpain activity indicated that Cd activated calpain. Treatment with calpain inhibitors (calpeptin) or overexpression of endogenous calpain inhibitors (calpastatin) partially inhibited Cd-induced necrosis. BAPTA-AM but not calpeptin reduced Cd-induced ROS, suggesting that calpain activation and ROS production are two independent downstream signalings of Cd-induced Ca2+-overload. It has been known that mitochondrial membrane permeability (MPT) is critical for necrosis induction. Induction of MPT causes collapse of mitochondrial membrane potential (MMP). The MMP level dropped when cells received Cd treatment. MPT inhibitor (cyclospron A, CsA) rescued cells from MMP reduction and necrosis. Cd-induced MPT was also inhibited by BAPTA-AM and calpeptin, which indicating that alternation of MPT is a downstream signal of calpain. NF-κB is a transcription factor that promotes cell survival. Reporter gene analysis indicated that Cd reduced basal NK-κB activity, which was recovered by BAPTA-AM and BHA. Thus, Cd induced necrosis through calpain-triggered MPT and ROS-dependent basal NF-κB inhibition. We also showed in this study that Nec-1 protected cells from Cd-induced necrosis via inhibition of calpain/MPT pathway and activation of NF-κB activity.
Aarts, M., Iihara, K., Wei, W. L., Xiong, Z. G., Arundine, M., Cerwinski, W., MacDonald, J. F., and Tymianski, M. (2003). A key role for TRPM7 channels in anoxic neuronal death. Cell 115, 863-877.
Acan, N. L., and Tezcan, E. F. (1995). Inhibition kinetics of sheep brain glutathione reductase by cadmium ion. Biochem. Mol. Med. 54, 33-37.
Achanzar, W. E., Webber, M. M., and Waalkes, M. P. (2002). Altered apoptotic gene expression and acquired apoptotic resistance in cadmium-transformed human prostate epithelial cells. Prostate 52, 236-244.
Adams, J. M., and Cory, S. (2001). Life-or-death decisions by the Bcl-2 protein family. Trends Biochem. Sci. 26, 61-66.
Agostinis, P., Buytaert, E., Breyssens, H., and Hendrickx, N. (2004). Regulatory pathways in photodynamic therapy induced apoptosis. Photochem Photobiol Sci 3, 721-729.
Aguilar, H. I., Botla, R., Arora, A. S., Bronk, S. F., and Gores, G. J. (1996). Induction of the mitochondrial permeability transition by protease activity in rats: a mechanism of hepatocyte necrosis. Gastroenterology 110, 558-566.
Andersen, O. (1989). Oral cadmium exposure in mice: toxicokinetics and efficiency of chelating agents. Crit. Rev. Toxicol. 20, 83-112.
Andersen, O. (1999). Principles and recent developments in chelation treatment of metal intoxication. Chem. Rev. 99, 2683-2710.
Ando, Y., Inoue, M., Hirota, M., Morino, Y., and Araki, S. (1989). Effect of a superoxide dismutase derivative on cold-induced brain edema. Brain Res. 477, 286-291.
Andreyev, A. Y., Kushnareva, Y. E., and Starkov, A. A. (2005). Mitochondrial metabolism of reactive oxygen species. Biochemistry (Mosc). 70, 200-214.
Ankarcrona, M., Dypbukt, J. M., Bonfoco, E., Zhivotovsky, B., Orrenius, S., Lipton, S. A., and Nicotera, P. (1995). Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron 15, 961-973.
Aoyagi, T., Hayakawa, K., Miyaji, K., Ishikawa, H., and Hata, M. (2003). Cadmium nephrotoxicity and evacuation from the body in a rat modeled subchronic intoxication. Int. J. Urol. 10, 332-338.
Arellano, M., and Moreno, S. (1997). Regulation of CDK/cyclin complexes during the cell cycle. Int. J. Biochem. Cell Biol. 29, 559-573.
Armstrong, B. G., and Kazantzis, G. (1983). The mortality of cadmium workers. Lancet 1, 1425-1427.
Arteel, G. E., and Sies, H. (2001). The biochemistry of selenium and the glutathione system. Environmental Toxicology and Pharmacology 10, 153-158.
Assoian, R. K., and Zhu, X. (1997). Cell anchorage and the cytoskeleton as partners in growth factor dependent cell cycle progression. Curr. Opin. Cell Biol. 9, 93-98.
Baggetto, L. G. (1992). Deviant energetic metabolism of glycolytic cancer cells. Biochimie 74, 959-974.
Baines, C. P., Kaiser, R. A., Purcell, N. H., Blair, N. S., Osinska, H., Hambleton, M. A., Brunskill, E. W., Sayen, M. R., Gottlieb, R. A., Dorn, G. W., Robbins, J., and Molkentin, J. D. (2005). Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434, 658-662.
Baker, K., Marcus, C. B., Huffman, K., Kruk, H., Malfroy, B., and Doctrow, S. R. (1998). Synthetic combined superoxide dismutase/catalase mimetics are protective as a delayed treatment in a rat stroke model: a key role for reactive oxygen species in ischemic brain injury. J. Pharmacol. Exp. Ther. 284, 215-221.
Balaban, R. S., Nemoto, S., and Finkel, T. (2005). Mitochondria, oxidants, and aging. Cell 120, 483-495.
Balamurugan, K., Rajaram, R., Ramasami, T., and Narayanan, S. (2002). Chromium(III)-induced apoptosis of lymphocytes: death decision by ROS and Src-family tyrosine kinases. Free Radic. Biol. Med. 33, 1622-1640.
Banfalvi, G., Gacsi, M., Nagy, G., Kiss, Z. B., and Basnakian, A. G. (2005). Cadmium induced apoptotic changes in chromatin structure and subphases of nuclear growth during the cell cycle in CHO cells. Apoptosis 10, 631-642.
Bannon, D. I., Abounader, R., Lees, P. S., and Bressler, J. P. (2003). Effect of DMT1 knockdown on iron, cadmium, and lead uptake in Caco-2 cells. Am J Physiol Cell Physiol 284, C44-50.
Bano, D., Young, K. W., Guerin, C. J., Lefeuvre, R., Rothwell, N. J., Naldini, L., Rizzuto, R., Carafoli, E., and Nicotera, P. (2005). Cleavage of the plasma membrane Na+/Ca2+ exchanger in excitotoxicity. Cell 120, 275-285.
Barnes, P. J. (2000). Chronic obstructive pulmonary disease. N. Engl. J. Med. 343, 269-280.
Basso, E., Fante, L., Fowlkes, J., Petronilli, V., Forte, M. A., and Bernardi, P. (2005). Properties of the permeability transition pore in mitochondria devoid of Cyclophilin D. J. Biol. Chem. 280, 18558-18561.
Baudry, M., Etienne, S., Bruce, A., Palucki, M., Jacobsen, E., and Malfroy, B. (1993). Salen-manganese complexes are superoxide dismutase-mimics. Biochem. Biophys. Res. Commun. 192, 964-968.
Bauer, D. E., Harris, M. H., Plas, D. R., Lum, J. J., Hammerman, P. S., Rathmell, J. C., Riley, J. L., and Thompson, C. B. (2004). Cytokine stimulation of aerobic glycolysis in hematopoietic cells exceeds proliferative demand. FASEB J. 18, 1303-1305.
Belyaeva, E. A., Glazunov, V. V., Nikitina, E. R., and Korotkov, S. M. (2001). Bivalent metal ions modulate Cd2+ effects on isolated rat liver mitochondria. J. Bioenerg. Biomembr. 33, 303-318.
Berger, N. A., Sims, J. L., Catino, D. M., and Berger, S. J. (1983). Poly(ADP-ribose) polymerase mediates the suicide response to massive DNA damage: studies in normal and DNA-repair defective cells. Princess Takamatsu Symp. 13, 219-226.
Bernard, A., Buchet, J. P., Roels, H., Masson, P., and Lauwerys, R. (1979). Renal excretion of proteins and enzymes in workers exposed to cadmium. Eur. J. Clin. Invest. 9, 11-22.
Berridge, M. J. (1995). Capacitative calcium entry. Biochem. J. 312 ( Pt 1), 1-11.
Berridge, M. J., Bootman, M. D., and Lipp, P. (1998). Calcium--a life and death signal. Nature 395, 645-648.
Beyersmann, D., and Hechtenberg, S. (1997). Cadmium, gene regulation, and cellular signalling in mammalian cells. Toxicol. Appl. Pharmacol. 144, 247-261.
Biagioli, M., Watjen, W., Beyersmann, D., Zoncu, R., Cappellini, C., Ragghianti, M., Cremisi, F., and Bucci, S. (2001). Cadmium-induced apoptosis in murine fibroblasts is suppressed by Bcl-2. Arch. Toxicol. 75, 313-320.
Bianchi, L., Gerstbrein, B., Frokjaer-Jensen, C., Royal, D. C., Mukherjee, G., Royal, M. A., Xue, J., Schafer, W. R., and Driscoll, M. (2004). The neurotoxic MEC-4(d) DEG/ENaC sodium channel conducts calcium: implications for necrosis initiation. Nat. Neurosci. 7, 1337-1344.
Blazka, M. E., and Shaikh, Z. A. (1991). Differences in cadmium and mercury uptakes by hepatocytes: role of calcium channels. Toxicol. Appl. Pharmacol. 110, 355-363.
Bludovska, M., Kotyzova, D., Koutensky, J., and Eybl, V. (1999). The influence of alpha-lipoic acid on the toxicity of cadmium. Gen. Physiol. Biophys. 18 Spec No, 28-32.
Bonnell, J. A. (1955). Emphysema and proteinuria in men casting copper-cadmium alloys. Br. J. Ind. Med. 12, 181-195.
Borella, P., and Giardino, A. (1991). Lead and cadmium at very low doses affect in vitro immune response of human lymphocytes. Environ. Res. 55, 165-177.
Bravard, A., Sabatier, L., Hoffschir, F., Ricoul, M., Luccioni, C., and Dutrillaux, B. (1992). SOD2: a new type of tumor-suppressor gene? Int. J. Cancer 51, 476-480.
Brewer, G. J. (2000). Recognition, diagnosis, and management of Wilson's disease. Proc. Soc. Exp. Biol. Med. 223, 39-46.
Bruce, A. J., Malfroy, B., and Baudry, M. (1996). beta-Amyloid toxicity in organotypic hippocampal cultures: protection by EUK-8, a synthetic catalytic free radical scavenger. Proc. Natl. Acad. Sci. U. S. A. 93, 2312-2316.
Carnero, A., and Hannon, G. J. (1998). The INK4 family of CDK inhibitors. Curr. Top. Microbiol. Immunol. 227, 43-55.
Casalino, E., Calzaretti, G., Sblano, C., and Landriscina, C. (2002a). Molecular inhibitory mechanisms of antioxidant enzymes in rat liver and kidney by cadmium. Toxicology 179, 37-50.
Casalino, E., Calzaretti, G., Sblano, C., Landriscina, V., Felice Tecce, M., and Landriscina, C. (2002b). Antioxidant effect of hydroxytyrosol (DPE) and Mn2+ in liver of cadmium-intoxicated rats. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 133, 625-632.
Chan, P. H., Yang, G. Y., Chen, S. F., Carlson, E., and Epstein, C. J. (1991). Cold-induced brain edema and infarction are reduced in transgenic mice overexpressing CuZn-superoxide dismutase. Ann. Neurol. 29, 482-486.
Chao, J. I., and Yang, J. L. (2001). Opposite roles of ERK and p38 mitogen-activated protein kinases in cadmium-induced genotoxicity and mitotic arrest. Chem. Res. Toxicol. 14, 1193-1202.
Chellman, G. J., Shaikh, Z. A., and Baggs, R. B. (1984). Decreased uptake and altered subcellular disposition of testicular cadmium as possible mechanisms of resistance to cadmium-induced testicular necrosis in inbred mice. Toxicology 30, 157-169.
Chiu, S. J., Lee, M. Y., Chen, H. W., Chou, W. G., and Lin, L. Y. (2002). Germanium oxide inhibits the transition from G2 to M phase of CHO cells. Chem. Biol. Interact. 141, 211-228.
Choi, M. K., Kim, B. H., Chung, Y. Y., and Han, M. S. (2002). Cadmium-induced apoptosis in h9c2, a7r5, and c6-glial cell. Bull. Environ. Contam. Toxicol. 69, 335-341.
Choi, Y. H., Lee, S. J., Nguyen, P., Jang, J. S., Lee, J., Wu, M. L., Takano, E., Maki, M., Henkart, P. A., and Trepel, J. B. (1997). Regulation of cyclin D1 by calpain protease. J. Biol. Chem. 272, 28479-28484.
Chu, Z. L., McKinsey, T. A., Liu, L., Gentry, J. J., Malim, M. H., and Ballard, D. W. (1997). Suppression of tumor necrosis factor-induced cell death by inhibitor of apoptosis c-IAP2 is under NF-kappaB control. Proc. Natl. Acad. Sci. U. S. A. 94, 10057-10062.
Chuang, S. M., Wang, I. C., and Yang, J. L. (2000). Roles of JNK, p38 and ERK mitogen-activated protein kinases in the growth inhibition and apoptosis induced by cadmium. Carcinogenesis 21, 1423-1432.
Chung, S., Gumienny, T. L., Hengartner, M. O., and Driscoll, M. (2000). A common set of engulfment genes mediates removal of both apoptotic and necrotic cell corpses in C. elegans. Nat. Cell Biol. 2, 931-937.
Church, S. L., Grant, J. W., Ridnour, L. A., Oberley, L. W., Swanson, P. E., Meltzer, P. S., and Trent, J. M. (1993). Increased manganese superoxide dismutase expression suppresses the malignant phenotype of human melanoma cells. Proc. Natl. Acad. Sci. U. S. A. 90, 3113-3117.
Cipriani, G., Rapizzi, E., Vannacci, A., Rizzuto, R., Moroni, F., and Chiarugi, A. (2005). Nuclear poly(ADP-ribose) polymerase-1 rapidly triggers mitochondrial dysfunction. J. Biol. Chem. 280, 17227-17234.
Clarke, S. J., McStay, G. P., and Halestrap, A. P. (2002). Sanglifehrin A acts as a potent inhibitor of the mitochondrial permeability transition and reperfusion injury of the heart by binding to cyclophilin-D at a different site from cyclosporin A. J. Biol. Chem. 277, 34793-34799.
Cohen, G. M. (1997). Caspases: the executioners of apoptosis. Biochem. J. 326 ( Pt 1), 1-16.
Colombaioni, L., and Garcia-Gil, M. (2004). Sphingolipid metabolites in neural signalling and function. Brain Res. Brain Res. Rev. 46, 328-355.
Cookson, B. T., and Brennan, M. A. (2001). Pro-inflammatory programmed cell death. Trends Microbiol. 9, 113-114.
Coyle, P., Philcox, J. C., Carey, L. C., and Rofe, A. M. (2002). Metallothionein: the multipurpose protein. Cell. Mol. Life Sci. 59, 627-647.
Cozzi, P. G. (2004). Metal-Salen Schiff base complexes in catalysis: practical aspects. Chem Soc Rev 33, 410-421.
Cummins, P. E., Dutton, J., Evans, C. J., Morgan, W. D., Sivyer, A., and Elwood, P. C. (1980). An in-vivo study of renal cadmium and hypertension. Eur. J. Clin. Invest. 10, 459-461.
Cuvillier, O. (2002). Sphingosine in apoptosis signaling. Biochim. Biophys. Acta 1585, 153-162.
D'Amours, D., Desnoyers, S., D'Silva, I., and Poirier, G. G. (1999). Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem. J. 342 ( Pt 2), 249-268.
Danial, N. N., and Korsmeyer, S. J. (2004). Cell death: critical control points. Cell 116, 205-219.
de Duve, C. (1983). Lysosomes revisited. Eur. J. Biochem. 137, 391-397.
Degterev, A., Huang, Z., Boyce, M., Li, Y., Jagtap, P., Mizushima, N., Cuny, G. D., Mitchison, T. J., Moskowitz, M. A., and Yuan, J. (2005). Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1, 112-119.
DHHS, N. N. T. P. (2000). Ninth Report on Carcinogens. National Toxicology Program, Research Triangle Park, NC.
Doctrow, S. R., Huffman, K., Marcus, C. B., Musleh, W., Bruce, A., Baudry, M., and Malfroy, B. (1997). Salen-manganese complexes: combined superoxide dismutase/catalase mimics with broad pharmacological efficacy. Adv. Pharmacol. 38, 247-269.
Dohi, Y., Sugimoto, K., Yoshikawa, T., Ohgushi, H., Katsuda, T., Tabata, S., and Moriyama, T. (1993). Effect of cadmium on osteogenesis within diffusion chambers by bone marrow cells: biochemical evidence of decreased bone formation capacity. Toxicol. Appl. Pharmacol. 120, 274-280.
Driscoll, M., and Chalfie, M. (1991). The mec-4 gene is a member of a family of Caenorhabditis elegans genes that can mutate to induce neuronal degeneration. Nature 349, 588-593.
Droy-Lefaix, M. T., Drouet, Y., Geraud, G., Hosford, D., and Braquet, P. (1991). Superoxide dismutase (SOD) and the PAF-antagonist (BN 52021) reduce small intestinal damage induced by ischemia-reperfusion. Free Radic. Res. Commun. 12-13 Pt 2, 725-735.
Du, L., Zhang, X., Han, Y. Y., Burke, N. A., Kochanek, P. M., Watkins, S. C., Graham, S. H., Carcillo, J. A., Szabo, C., and Clark, R. S. (2003). Intra-mitochondrial poly(ADP-ribosylation) contributes to NAD+ depletion and cell death induced by oxidative stress. J. Biol. Chem. 278, 18426-18433.
Edeas, M. A., Emerit, I., Khalfoun, Y., Lazizi, Y., Cernjavski, L., Levy, A., and Lindenbaum, A. (1997). Clastogenic factors in plasma of HIV-1 infected patients activate HIV-1 replication in vitro: inhibition by superoxide dismutase. Free Radic. Biol. Med. 23, 571-578.
el Azzouzi, B., Tsangaris, G. T., Pellegrini, O., Manuel, Y., Benveniste, J., and Thomas, Y. (1994). Cadmium induces apoptosis in a human T cell line. Toxicology 88, 127-139.
Elinder, C. G. (1985). Cadmium and health. In A Toxicological and Epidemiological Appraisal (L. Friberg, Elinder, C.G., Kjellstrom, T. and Nordberg, G.F., Ed.). CRC press, Boca Raton, Florida.
Endres, M., Wang, Z. Q., Namura, S., Waeber, C., and Moskowitz, M. A. (1997). Ischemic brain injury is mediated by the activation of poly(ADP-ribose)polymerase. J. Cereb. Blood Flow Metab. 17, 1143-1151.
Enger, M. D., Flomerfelt, F. A., Wall, P. L., and Jenkins, P. S. (1987). Cadmium produces a delayed mitogenic response and modulates the EGF response in quiescent NRK cells. Cell Biol. Toxicol. 3, 407-416.
Fatt, P., and Ginsborg, B. L. (1958). The ionic requirements for the production of action potentials in crustacean muscle fibres. J Physiol 142, 516-543.
Fendorf, S. E., Sparks, D. L., Franz, J. A., and Camaioni, D. M. (1993). Electron Paramagnetic Resonance Stopped-Flow Kinetic Study of Manganese(II) Sorption-Desorption on Birnessite. Soil Sci Soc Am J 57, 57-62.
Fischer, A. B. (1995). Studies of cadmium chelator efficacy using mammalian cell cultures. Analyst 120, 975-978.
Fisher, R. P., and Morgan, D. O. (1994). A novel cyclin associates with MO15/CDK7 to form the CDK-activating kinase. Cell 78, 713-724.
Fleming, M. D., Romano, M. A., Su, M. A., Garrick, L. M., Garrick, M. D., and Andrews, N. C. (1998). Nramp2 is mutated in the anemic Belgrade (b) rat: evidence of a role for Nramp2 in endosomal iron transport. Proc. Natl. Acad. Sci. U. S. A. 95, 1148-1153.
Flora, S. J., Gubrelay, U., Kannan, G. M., and Mathur, R. (1998). Effects of zinc supplementation during chelating agent administration in cadmium intoxication in rats. J. Appl. Toxicol. 18, 357-362.
Flores, S. C., Marecki, J. C., Harper, K. P., Bose, S. K., Nelson, S. K., and McCord, J. M. (1993). Tat protein of human immunodeficiency virus type 1 represses expression of manganese superoxide dismutase in HeLa cells. Proc. Natl. Acad. Sci. U. S. A. 90, 7632-7636.
Foulkes, E. C. (2000). Transport of toxic heavy metals across cell membranes. Proc. Soc. Exp. Biol. Med. 223, 234-240.
Fox, M. R., Fry, B. E., Jr., Harland, B. F., Schertel, M. E., and Weeks, C. E. (1971). Effect of ascorbic acid on cadmium toxicity in the young coturnix. J. Nutr. 101, 1295-1305.
Friberg, L. (1956). Edathamil calcium-disodium in cadmium poisoning; a study of the excretion, distribution, and toxicity of cadmium in animals. AMA Arch Ind Health 13, 18-23.
Friberg, L., Nordberg, G. F., and Vouk, V. B. (1979). Handbook on the Toxicology of Metals Elsevier, Amsterdam.
Fryer, H. J., Knox, R. J., Strittmatter, S. M., and Kalb, R. G. (1999). Excitotoxic death of a subset of embryonic rat motor neurons in vitro. J. Neurochem. 72, 500-513.
Fuentes-Prior, P., and Salvesen, G. S. (2004). The protein structures that shape caspase activity, specificity, activation and inhibition. Biochem. J. 384, 201-232.
Gagne, F., Marion, M., and Denizeau, F. (1990). Metal homeostasis and metallothionein induction in rainbow trout hepatocytes exposed to cadmium. Fundam. Appl. Toxicol. 14, 429-437.
Galan, A., Garcia-Bermejo, L., Troyano, A., Vilaboa, N. E., Fernandez, C., de Blas, E., and Aller, P. (2001a). The role of intracellular oxidation in death induction (apoptosis and necrosis) in human promonocytic cells treated with stress inducers (cadmium, heat, X-rays). Eur. J. Cell Biol. 80, 312-320.
Galan, A., Garcia-Bermejo, M. L., Troyano, A., Vilaboa, N. E., de Blas, E., Kazanietz, M. G., and Aller, P. (2000). Stimulation of p38 mitogen-activated protein kinase is an early regulatory event for the cadmium-induced apoptosis in human promonocytic cells. J. Biol. Chem. 275, 11418-11424.
Galan, A., Troyano, A., Vilaboa, N. E., Fernandez, C., de Blas, E., and Aller, P. (2001b). Modulation of the stress response during apoptosis and necrosis induction in cadmium-treated U-937 human promonocytic cells. Biochim. Biophys. Acta 1538, 38-46.
Gale, G. R., Smith, A. B., and Walker, E. M., Jr. (1981). Diethyldithiocarbamate in treatment of acute cadmium poisoning. Ann. Clin. Lab. Sci. 11, 476-483.
Garrington, T. P., and Johnson, G. L. (1999). Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr. Opin. Cell Biol. 11, 211-218.
Gennari, A., Cortese, E., Boveri, M., Casado, J., and Prieto, P. (2003). Sensitive endpoints for evaluating cadmium-induced acute toxicity in LLC-PK1 cells. Toxicology 183, 211-220.
Girard, F., Strausfeld, U., Fernandez, A., and Lamb, N. J. (1991). Cyclin A is required for the onset of DNA replication in mammalian fibroblasts. Cell 67, 1169-1179.
Glotzer, M., Murray, A. W., and Kirschner, M. W. (1991). Cyclin is degraded by the ubiquitin pathway. Nature 349, 132-138.
Goll, D. E., Thompson, V. F., Li, H., Wei, W., and Cong, J. (2003). The calpain system. Physiol. Rev. 83, 731-801.
Goossens, V., De Vos, K., Vercammen, D., Steemans, M., Vancompernolle, K., Fiers, W., Vandenabeele, P., and Grooten, J. (1999). Redox regulation of TNF signaling. Biofactors 10, 145-156.
Gores, G. J., Miyoshi, H., Botla, R., Aguilar, H. I., and Bronk, S. F. (1998). Induction of the mitochondrial permeability transition as a mechanism of liver injury during cholestasis: a potential role for mitochondrial proteases. Biochim. Biophys. Acta 1366, 167-175.
Goyer, R. A., Cherian, M. G., Jones, M. M., and Reigart, J. R. (1995). Role of chelating agents for prevention, intervention, and treatment of exposures to toxic metals. Environ. Health Perspect. 103, 1048-1052.
Gunawardana, C. G., Martinez, R. E., Xiao, W., and Templeton, D. M. (2006). Cadmium inhibits both intrinsic and extrinsic apoptotic pathways in renal mesangial cells. Am. J. Physiol. Renal Physiol. 290, F1074-1082.
Gunshin, H., Mackenzie, B., Berger, U. V., Gunshin, Y., Romero, M. F., Boron, W. F., Nussberger, S., Gollan, J. L., and Hediger, M. A. (1997). Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388, 482-488.
Guthrie, B. E. (1975). Chromium, manganese, copper, zinc and cadmium content, of New Zealand foods. N. Z. Med. J. 82, 418-424.
Habeebu, S. S., Liu, J., and Klaassen, C. D. (1998). Cadmium-induced apoptosis in mouse liver. Toxicol. Appl. Pharmacol. 149, 203-209.
Halestrap, A. P., Connern, C. P., Griffiths, E. J., and Kerr, P. M. (1997). Cyclosporin A binding to mitochondrial cyclophilin inhibits the permeability transition pore and protects hearts from ischaemia/reperfusion injury. Mol. Cell. Biochem. 174, 167-172.
Hannon, G. J., and Beach, D. (1994). p15INK4B is a potential effector of TGF-beta-induced cell cycle arrest. Nature 371, 257-261.
Hao, Z., Reiske, H. R., and Wilson, D. B. (1999). Characterization of cadmium uptake in Lactobacillus plantarum and isolation of cadmium and manganese uptake mutants. Appl. Environ. Microbiol. 65, 4741-4745.
Harper, J. W., Elledge, S. J., Keyomarsi, K., Dynlacht, B., Tsai, L. H., Zhang, P., Dobrowolski, S., Bai, C., Connell-Crowley, L., Swindell, E., and et al. (1995). Inhibition of cyclin-dependent kinases by p21. Mol. Biol. Cell 6, 387-400.
Hart, B. A., Lee, C. H., Shukla, G. S., Shukla, A., Osier, M., Eneman, J. D., and Chiu, J. F. (1999). Characterization of cadmium-induced apoptosis in rat lung epithelial cells: evidence for the participation of oxidant stress. Toxicology 133, 43-58.
Hart, B. A., Potts, R. J., and Watkin, R. D. (2001). Cadmium adaptation in the lung - a double-edged sword? Toxicology 160, 65-70.
Hartley, A., Stone, J. M., Heron, C., Cooper, J. M., and Schapira, A. H. (1994). Complex I inhibitors induce dose-dependent apoptosis in PC12 cells: relevance to Parkinson's disease. J. Neurochem. 63, 1987-1990.
Hassoun, E. A., and Stohs, S. J. (1996). Cadmium-induced production of superoxide anion and nitric oxide, DNA single strand breaks and lactate dehydrogenase leakage in J774A.1 cell cultures. Toxicology 112, 219-226.
Haworth, R. A., and Hunter, D. R. (1979). The Ca2+-induced membrane transition in mitochondria. II. Nature of the Ca2+ trigger site. Arch. Biochem. Biophys. 195, 460-467.
Hayakawa, M., Miyashita, H., Sakamoto, I., Kitagawa, M., Tanaka, H., Yasuda, H., Karin, M., and Kikugawa, K. (2003). Evidence that reactive oxygen species do not mediate NF-kappaB activation. EMBO J. 22, 3356-3366.
Heald, R., McLoughlin, M., and McKeon, F. (1993). Human wee1 maintains mitotic timing by protecting the nucleus from cytoplasmically activated Cdc2 kinase. Cell 74, 463-474.
Hengartner, M. (1998). Apoptosis. Death by crowd control. Science 281, 1298-1299.
Hengartner, M. O. (2000). The biochemistry of apoptosis. Nature 407, 770-776.
Hengst, L., and Reed, S. I. (1998). Inhibitors of the Cip/Kip family. Curr. Top. Microbiol. Immunol. 227, 25-41.
Himeno, S. (2002). Application of metallothionein null cells to investigation of cadmium transport. J. Inorg. Biochem. 88, 207-212.
Hinkle, P. M., Kinsella, P. A., and Osterhoudt, K. C. (1987). Cadmium uptake and toxicity via voltage-sensitive calcium channels. J. Biol. Chem. 262, 16333-16337.
Hinkle, P. M., and Osborne, M. E. (1994). Cadmium toxicity in rat pheochromocytoma cells: studies on the mechanism of uptake. Toxicol. Appl. Pharmacol. 124, 91-98.
Hinz, M., Krappmann, D., Eichten, A., Heder, A., Scheidereit, C., and Strauss, M. (1999). NF-kappaB function in growth control: regulation of cyclin D1 expression and G0/G1-to-S-phase transition. Mol. Cell. Biol. 19, 2690-2698.
Ho, Y. S., Vincent, R., Dey, M. S., Slot, J. W., and Crapo, J. D. (1998). Transgenic models for the study of lung antioxidant defense: enhanced manganese-containing superoxide dismutase activity gives partial protection to B6C3 hybrid mice exposed to hyperoxia. Am. J. Respir. Cell Mol. Biol. 18, 538-547.
Hoffmann, L., Putzke, H. P., Kampehl, H. J., Russbult, R., Gase, P., Simonn, C., Erdmann, T., and Huckstorf, C. (1985). Carcinogenic effects of cadmium on the prostate of the rat. J. Cancer Res. Clin. Oncol. 109, 193-199.
Holler, N., Zaru, R., Micheau, O., Thome, M., Attinger, A., Valitutti, S., Bodmer, J. L., Schneider, P., Seed, B., and Tschopp, J. (2000). Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat. Immunol. 1, 489-495.
Holt, J. A. (1983). Cancer, a disease of defective glucose metabolism. Med. Hypotheses 10, 133-150.
Hu, C. C., Chen, W. K., Liao, P. H., Yu, W. C., and Lee, Y. J. (2001). Synergistic effect of cadmium chloride and acetaldehyde on cytotoxicity and its prevention by quercetin and glycyrrhizin. Mutat. Res. 496, 117-127.
Huang, M., and Chalfie, M. (1994). Gene interactions affecting mechanosensory transduction in Caenorhabditis elegans. Nature 367, 467-470.
Hunter, D. R., and Haworth, R. A. (1979a). The Ca2+-induced membrane transition in mitochondria. I. The protective mechanisms. Arch. Biochem. Biophys. 195, 453-459.
Hunter, D. R., and Haworth, R. A. (1979b). The Ca2+-induced membrane transition in mitochondria. III. Transitional Ca2+ release. Arch. Biochem. Biophys. 195, 468-477.
Hussain, T., Shukla, G. S., and Chandra, S. V. (1987). Effects of cadmium on superoxide dismutase and lipid peroxidation in liver and kidney of growing rats: in vivo and in vitro studies. Pharmacol. Toxicol. 60, 355-358.
IARC (1993a). Beryllium, cadmium, mercury, and exposure in the glass manufacturing industry. In IARC Monographs on the Evaluation of Carcinogenic Risks to Human, pp. 119-237. IARC Scientific Publications, Lyon, France.
IARC (1993b). Cadmium and cadmium compounds. IARC Monogr. Eval. Carcinog. Risks Hum. 58, 119-237.
Iguchi, H., and Sano, S. (1982). Effect of cadmium on the bone collagen metabolism of rat. Toxicol. Appl. Pharmacol. 62, 126-136.
Iryo, Y., Matsuoka, M., Wispriyono, B., Sugiura, T., and Igisu, H. (2000). Involvement of the extracellular signal-regulated protein kinase (ERK) pathway in the induction of apoptosis by cadmium chloride in CCRF-CEM cells. Biochem. Pharmacol. 60, 1875-1882.
Japanese Assocaiation of Public Health (1970). Research about Intake and Accumulation of Cadmium in Areas Requiring Observation. Japanese Assocaiation of Public Health, Tokyo.
Jeffrey, P. D., Russo, A. A., Polyak, K., Gibbs, E., Hurwitz, J., Massague, J., and Pavletich, N. P. (1995). Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature 376, 313-320.
Jeon, H. K., Jin, H. S., Lee, D. H., Choi, W. S., Moon, C. K., Oh, Y. J., and Lee, T. H. (2004). Proteome analysis associated with cadmium adaptation in U937 cells: identification of calbindin-D28k as a secondary cadmium-responsive protein that confers resistance to cadmium-induced apoptosis. J. Biol. Chem. 279, 31575-31583.
Johnson, D. G., and Walker, C. L. (1999). Cyclins and cell cycle checkpoints. Annu. Rev. Pharmacol. Toxicol. 39, 295-312.
Jones, M. M. (1991). New developments in therapeutic chelating agents as antidotes for metal poisoning. Crit. Rev. Toxicol. 21, 209-233.
Jones, M. M., and Cherian, M. G. (1990). The search for chelate antagonists for chronic cadmium intoxication. Toxicology 62, 1-25.
Jones, M. M., Singh, P. K., Basinger, M. A., Gale, G. R., Smith, A. B., and Harris, W. R. (1994). Design of in vivo cadmium-mobilizing agents: synthesis and properties of monobenzyl meso-2,3-dimercaptosuccinate. Chem. Res. Toxicol. 7, 367-373.
Jung, C., Rong, Y., Doctrow, S., Baudry, M., Malfroy, B., and Xu, Z. (2001). Synthetic superoxide dismutase/catalase mimetics reduce oxidative stress and prolong survival in a mouse amyotrophic lateral sclerosis model. Neurosci. Lett. 304, 157-160.
Kagedal, K., Zhao, M., Svensson, I., and Brunk, U. T. (2001). Sphingosine-induced apoptosis is dependent on lysosomal proteases. Biochem. J. 359, 335-343.
Kaji, T., Suzuki, M., Yamamoto, C., Imaki, Y., Miyajima, S., Fujiwara, Y., Sakamoto, M., and Kozuka, H. (1996). Sensitive response of cultured vascular smooth-muscle cells to cadmium cytotoxicity: comparison with cultured vascular endothelial cells and kidney epithelial LLC-PK1 cells. Toxicol. Lett. 89, 131-137.
Karbownik, M., Gitto, E., Lewinski, A., and Reiter, R. J. (2001). Induction of lipid peroxidation in hamster organs by the carcinogen cadmium: melioration by melatonin. Cell Biol. Toxicol. 17, 33-40.
Kim, J. S., He, L., and Lemasters, J. J. (2003). Mitochondrial permeability transition: a common pathway to necrosis and apoptosis. Biochem. Biophys. Res. Commun. 304, 463-470.
Kim, M. S., Kim, B. J., Woo, H. N., Kim, K. W., Kim, K. B., Kim, I. K., and Jung, Y. K. (2000). Cadmium induces caspase-mediated cell death: suppression by Bcl-2. Toxicology 145, 27-37.
Kim, M. Y., Zhang, T., and Kraus, W. L. (2005). Poly(ADP-ribosyl)ation by PARP-1: 'PAR-laying' NAD+ into a nuclear signal. Genes Dev. 19, 1951-1967.
Kim, S. J., Lee, Z. W., Kweon, S. M., Kim, S., and Ha, K. S. (2002). Regulation of reactive oxygen species and stress fiber formation by calpeptin in Swiss 3T3 fibroblasts. Cell. Signal. 14, 205-210.
King, K. L., and Cidlowski, J. A. (1995). Cell cycle and apoptosis: common pathways to life and death. J. Cell. Biochem. 58, 175-180.
King, R. W., Jackson, P. K., and Kirschner, M. W. (1994). Mitosis in transition. Cell 79, 563-571.
Kjellstrom, T., Borg, K., and Lind, B. (1978). Cadmium in feces as an estimator of daily cadmium intake in Sweden. Environ. Res. 15, 242-251.
Kjellstrom, T., and Nordberg, G. F. (1978). A kinetic model of cadmium metabolism in the human being. Environ. Res. 16, 248-269.
Klotz, L. O., Kroncke, K. D., Buchczyk, D. P., and Sies, H. (2003). Role of copper, zinc, selenium and tellurium in the cellular defense against oxidative and nitrosative stress. J. Nutr. 133, 1448S-1451S.
Klug-Roth, D., Fridovich, I., and Rabani, J. (1973). Pulse radiolytic investigations of superoxide catalyzed disproportionation. Mechanism for bovine superoxide dismutase. J. Am. Chem. Soc. 95, 2786-2790.
Koizumi, T., and Li, Z. G. (1992). Role of oxidative stress in single-dose, cadmium-induced testicular cancer. J. Toxicol. Environ. Health 37, 25-36.
Koizumi, T., Shirakura, H., Kumagai, H., Tatsumoto, H., and Suzuki, K. T. (1996). Mechanism of cadmium-induced cytotoxicity in rat hepatocytes: cadmium-induced active oxygen-related permeability changes of the plasma membrane. Toxicology 114, 125-134.
Kokoszka, J. E., Waymire, K. G., Levy, S. E., Sligh, J. E., Cai, J., Jones, D. P., MacGregor, G. R., and Wallace, D. C. (2004). The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature 427, 461-465.
Krall, J., Bagley, A. C., Mullenbach, G. T., Hallewell, R. A., and Lynch, R. E. (1988). Superoxide mediates the toxicity of paraquat for cultured mammalian cells. J. Biol. Chem. 263, 1910-1914.
Kucharczak, J., Simmons, M. J., Fan, Y., and Gelinas, C. (2003). To be, or not to be: NF-kappaB is the answer - role of Rel/NF-kappaB in the regulation of apoptosis. Oncogene 22, 8961-8982.
Kuida, K., Lippke, J. A., Ku, G., Harding, M. W., Livingston, D. J., Su, M. S., and Flavell, R. A. (1995). Altered cytokine export and apoptosis in mice deficient in interleukin-1 beta converting enzyme. Science 267, 2000-2003.
Lag, M., Westly, S., Lerstad, T., Bjornsrud, C., Refsnes, M., and Schwarze, P. E. (2002). Cadmium-induced apoptosis of primary epithelial lung cells: involvement of Bax and p53, but not of oxidative stress. Cell Biol. Toxicol. 18, 29-42.
Land, W., and Zweler, J. L. (1997). Prevention of reperfusion-induced, free radical-mediated acute endothelial injury by superoxide dismutase as an effective tool to delay/prevent chronic renal allograft failure: a review. Transplant. Proc. 29, 2567-2568.
Larsson, S. E., and Piscator, M. (1971). Effect of cadmium on skeletal tissue in normal and calcium-deficient rats. Isr. J. Med. Sci. 7, 495-498.
Lau, A. T., Zhang, J., and Chiu, J. F. (2006). Acquired tolerance in cadmium-adapted lung epithelial cells: Roles of the c-Jun N-terminal kinase signaling pathway and basal level of metallothionein. Toxicol. Appl. Pharmacol.
Leber, A. P., and Miya, T. S. (1976). A mechanism for cadmium- and zinc-induced tolerance to cadmium toxicity: involvement of metallothionein. Toxicol. Appl. Pharmacol. 37, 403-414.
Lee, H. H., Dadgostar, H., Cheng, Q., Shu, J., and Cheng, G. (1999a). NF-kappaB-mediated up-regulation of Bcl-x and Bfl-1/A1 is required for CD40 survival signaling in B lymphocytes. Proc. Natl. Acad. Sci. U. S. A. 96, 9136-9141.
Lee, I. A., Seong, C., and Choe, I. S. (1999b). Cloning and expression of human cDNA encoding human homologue of pituitary tumor transforming gene. Biochem. Mol. Biol. Int. 47, 891-897.
Lee, M. H., Reynisdottir, I., and Massague, J. (1995). Cloning of p57KIP2, a cyclin-dependent kinase inhibitor with unique domain structure and tissue distribution. Genes Dev. 9, 639-649.
Lee, Y. J., and Shacter, E. (1999). Oxidative stress inhibits apoptosis in human lymphoma cells. J. Biol. Chem. 274, 19792-19798.
Lemarie, A., Lagadic-Gossmann, D., Morzadec, C., Allain, N., Fardel, O., and Vernhet, L. (2004). Cadmium induces caspase-independent apoptosis in liver Hep3B cells: role for calcium in signaling oxidative stress-related impairment of mitochondria and relocation of endonuclease G and apoptosis-inducing factor. Free Radic. Biol. Med. 36, 1517-1531.
Lemasters, J. J. (1999). V. Necrapoptosis and the mitochondrial permeability transition: shared pathways to necrosis and apoptosis. Am. J. Physiol. 276, G1-6.
Letai, A. (2005). BCL-2: found bound and drugged! Trends Mol. Med. 11, 442-444.
Lew, D. J., and Kornbluth, S. (1996). Regulatory roles of cyclin dependent kinase phosphorylation in cell cycle control. Curr. Opin. Cell Biol. 8, 795-804.
Lewis, G. P., Coughlin, L. L., Jusko, W. J., and Hartz, S. (1972). Contribution of cigarette smoking to cadmium accumulation in man. Lancet 1, 291-292.
Li, M., Kondo, T., Zhao, Q. L., Li, F. J., Tanabe, K., Arai, Y., Zhou, Z. C., and Kasuya, M. (2000). Apoptosis induced by cadmium in human lymphoma U937 cells through Ca2+-calpain and caspase-mitochondria- dependent pathways. J. Biol. Chem. 275, 39702-39709.
Li, N., and Karin, M. (1999). Is NF-kappaB the sensor of oxidative stress? FASEB J. 13, 1137-1143.
Li, P., Allen, H., Banerjee, S., Franklin, S., Herzog, L., Johnston, C., McDowell, J., Paskind, M., Rodman, L., Salfeld, J., and et al. (1995). Mice deficient in IL-1 beta-converting enzyme are defective in production of mature IL-1 beta and resistant to endotoxic shock. Cell 80, 401-411.
Li, W., Zhao, Y., and Chou, I. N. (1993). Alterations in cytoskeletal protein sulfhydryls and cellular glutathione in cultured cells exposed to cadmium and nickel ions. Toxicology 77, 65-79.
Li, Z. S., Lu, Y. P., Zhen, R. G., Szczypka, M., Thiele, D. J., and Rea, P. A. (1997). A new pathway for vacuolar cadmium sequestration in Saccharomyces cerevisiae: YCF1-catalyzed transport of bis(glutathionato)cadmium. Proc. Natl. Acad. Sci. U. S. A. 94, 42-47.
Lindsten, T., Ross, A. J., King, A., Zong, W. X., Rathmell, J. C., Shiels, H. A., Ulrich, E., Waymire, K. G., Mahar, P., Frauwirth, K., Chen, Y., Wei, M., Eng, V. M., Adelman, D. M., Simon, M. C., Ma, A., Golden, J. A., Evan, G., Korsmeyer, S. J., MacGregor, G. R., and Thompson, C. B. (2000). The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol. Cell 6, 1389-1399.
Ling, Y. H., el-Naggar, A. K., Priebe, W., and Perez-Soler, R. (1996). Cell cycle-dependent cytotoxicity, G2/M phase arrest, and disruption of p34cdc2/cyclin B1 activity induced by doxorubicin in synchronized P388 cells. Mol. Pharmacol. 49, 832-841.
Liston, P., Roy, N., Tamai, K., Lefebvre, C., Baird, S., Cherton-Horvat, G., Farahani, R., McLean, M., Ikeda, J. E., MacKenzie, A., and Korneluk, R. G. (1996). Suppression of apoptosis in mammalian cells by NAIP and a related family of IAP genes. Nature 379, 349-353.
Liu, F., and Jan, K. Y. (2000). DNA damage in arsenite- and cadmium-treated bovine aortic endothelial cells. Free Radic. Biol. Med. 28, 55-63.
Liu, X., Van Vleet, T., and Schnellmann, R. G. (2004). The role of calpain in oncotic cell death. Annu. Rev. Pharmacol. Toxicol. 44, 349-370.
Lum, J. J., Bauer, D. E., Kong, M., Harris, M. H., Li, C., Lindsten, T., and Thompson, C. B. (2005). Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120, 237-248.
Lundberg, A. S., and Weinberg, R. A. (1999). Control of the cell cycle and apoptosis. Eur. J. Cancer 35, 1886-1894.
Majno, G., and Joris, I. (1995). Apoptosis, oncosis, and necrosis. An overview of cell death. Am. J. Pathol. 146, 3-15.
Malfroy, B., Doctrow, S. R., Orr, P. L., Tocco, G., Fedoseyeva, E. V., and Benichou, G. (1997). Prevention and suppression of autoimmune encephalomyelitis by EUK-8, a synthetic catalytic scavenger of oxygen-reactive metabolites. Cell. Immunol. 177, 62-68.
Manca, D., Ricard, A. C., Tra, H. V., and Chevalier, G. (1994). Relation between lipid peroxidation and inflammation in the pulmonary toxicity of cadmium. Arch. Toxicol. 68, 364-369.
Marnett, L. J. (2000). Oxyradicals and DNA damage. Carcinogenesis 21, 361-370.
Marzo, I., Brenner, C., Zamzami, N., Jurgensmeier, J. M., Susin, S. A., Vieira, H. L., Prevost, M. C., Xie, Z., Matsuyama, S., Reed, J. C., and Kroemer, G. (1998). Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science 281, 2027-2031.
McConkey, D. J., and Orrenius, S. (1996). The role of calcium in the regulation of apoptosis. J. Leukoc. Biol. 59, 775-783.
McConkey, D. J., and Orrenius, S. (1997). The role of calcium in the regulation of apoptosis. Biochem. Biophys. Res. Commun. 239, 357-366.
McCord, J. M. (1986). Superoxide dismutase: rationale for use in reperfusion injury and inflammation. J. Free Radic. Biol. Med. 2, 307-310.
McStay, G. P., Clarke, S. J., and Halestrap, A. P. (2002). Role of critical thiol groups on the matrix surface of the adenine nucleotide translocase in the mechanism of the mitochondrial permeability transition pore. Biochem. J. 367, 541-548.
Ministry of Agriculture, Fisheries and Food. (1973). Survey of Cadmium in Food. Working party on the Monitoring of Foodstuffs for heavy Metals, 4th Report. Her Majesty's Stationery Office, London.
Misra, U. K., Gawdi, G., Akabani, G., and Pizzo, S. V. (2002). Cadmium-induced DNA synthesis and cell proliferation in macrophages: the role of intracellular calcium and signal transduction mechanisms. Cell. Signal. 14, 327-340.
Mollace, V., Nottet, H. S., Clayette, P., Turco, M. C., Muscoli, C., Salvemini, D., and Perno, C. F. (2001). Oxidative stress and neuroAIDS: triggers, modulators and novel antioxidants. Trends Neurosci. 24, 411-416.
Morgan, D. O. (1995). Principles of CDK regulation. Nature 374, 131-134.
Morselt, A. F. (1991). Environmental pollutants and diseases. A cell biological approach using chronic cadmium exposure in the animal model as a paradigm case. Toxicology 70, 1-132.
Muller, L., and Menzel, H. (1990). Studies on the efficacy of lipoate and dihydrolipoate in the alteration of cadmium2+ toxicity in isolated hepatocytes. Biochim. Biophys. Acta 1052, 386-391.
Nagata, S., and Golstein, P. (1995). The Fas death factor. Science 267, 1449-1456.
Nakagawa, T., Shimizu, S., Watanabe, T., Yamaguchi, O., Otsu, K., Yamagata, H., Inohara, H., Kubo, T., and Tsujimoto, Y. (2005). Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434, 652-658.
Nakagawa, T., Zhu, H., Morishima, N., Li, E., Xu, J., Yankner, B. A., and Yuan, J. (2000). Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403, 98-103.
Narita, M., Shimizu, S., Ito, T., Chittenden, T., Lutz, R. J., Matsuda, H., and Tsujimoto, Y. (1998). Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria. Proc. Natl. Acad. Sci. U. S. A. 95, 14681-14686.
Nehru, L. B., and Bansal, M. P. (1997). Effect of selenium supplementation on the glutathione redox system in the kidney of mice after chronic cadmium exposures. J. Appl. Toxicol. 17, 81-84.
Neumar, R. W., DeGracia, D. J., White, B. C., McDermott, P. J., Evans, D. R., and Krause, G. S. (1995). Eukaryotic initiation factor 4E degradation during brain ischemia. J. Neurochem. 65, 1391-1394.
Nicolli, A., Basso, E., Petronilli, V., Wenger, R. M., and Bernardi, P. (1996). Interactions of cyclophilin with the mitochondrial inner membrane and regulation of the permeability transition pore, and cyclosporin A-sensitive channel. J. Biol. Chem. 271, 2185-2192.
Nicotera, P., Leist, M., and Manzo, L. (1999). Neuronal cell death: a demise with different shapes. Trends Pharmacol. Sci. 20, 46-51.
Nishiguchi, K., Ishida, K., Nakajima, M., Maeda, T., Komada, F., Iwakawa, S., Tanigawara, Y., and Okumura, K. (1996). Pharmaceutical studies for gene therapy: expression of human Cu, Zn-superoxide dismutase gene transfected by lipofection in rat skin fibroblasts. Biol. Pharm. Bull. 19, 1073-1077.
Nishimura, Y., and Lemasters, J. J. (2001). Glycine blocks opening of a death channel in cultured hepatic sinusoidal endothelial cells during chemical hypoxia. Cell Death Differ. 8, 850-858.
Nogueira, C. W., Meotti, F. C., Curte, E., Pilissao, C., Zeni, G., and Rocha, J. B. (2003). Investigations into the potential neurotoxicity induced by diselenides in mice and rats. Toxicology 183, 29-37.
Nogueira, C. W., Zeni, G., and Rocha, J. B. (2004). Organoselenium and organotellurium compounds: toxicology and pharmacology. Chem. Rev. 104, 6255-6285.
Nordberg, G. F. (1989). Modulation of metal toxicity by metallothionein. Biol. Trace Elem. Res. 21, 131-135.
Nordberg, J., and Arner, E. S. (2001). Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic. Biol. Med. 31, 1287-1312.
Nordberg, M., Jin, T., and Nordberg, G. F. (1992). Cadmium, metallothionein and renal tubular toxicity. IARC Sci. Publ., 293-297.
Nurse, P. (1990). Universal control mechanism regulating onset of M-phase. Nature 344, 503-508.
Nylandsted, J., Gyrd-Hansen, M., Danielewicz, A., Fehrenbacher, N., Lademann, U., Hoyer-Hansen, M., Weber, E., Multhoff, G., Rohde, M., and Jaattela, M. (2004). Heat shock protein 70 promotes cell survival by inhibiting lysosomal membrane permeabilization. J. Exp. Med. 200, 425-435.
O'Brien, P., and Salacinski, H. J. (1998). Evidence that the reactions of cadmium in the presence of metallothionein can produce hydroxyl radicals. Arch. Toxicol. 72, 690-700.
Oh, S. H., Lee, B. H., and Lim, S. C. (2004). Cadmium induces apoptotic cell death in WI 38 cells via caspase-dependent Bid cleavage and calpain-mediated mitochondrial Bax cleavage by Bcl-2-independent pathway. Biochem. Pharmacol. 68, 1845-1855.
Ohgoh, M., Shimizu, H., Ogura, H., and Nishizawa, Y. (2000). Astroglial trophic support and neuronal cell death: influence of cellular energy level on type of cell death induced by mitochondrial toxin in cultured rat cortical neurons. J. Neurochem. 75, 925-933.
Ohtsubo, M., Theodoras, A. M., Schumacher, J., Roberts, J. M., and Pagano, M. (1995). Human cyclin E, a nuclear protein essential for the G1-to-S phase transition. Mol. Cell. Biol. 15, 2612-2624.
Okamoto, K., and Beach, D. (1994). Cyclin G is a transcriptional target of the p53 tumor suppressor protein. EMBO J. 13, 4816-4822.
Okubo, M., Yamada, K., Hosoyamada, M., Shibasaki, T., and Endou, H. (2003). Cadmium transport by human Nramp 2 expressed in Xenopus laevis oocytes. Toxicol. Appl. Pharmacol. 187, 162-167.
Omar, B. A., and McCord, J. M. (1991). Interstitial equilibration of superoxide dismutase correlates with its protective effect in the isolated rabbit heart. J. Mol. Cell. Cardiol. 23, 149-159.
Orren, D. K., Petersen, L. N., and Bohr, V. A. (1995). A UV-responsive G2 checkpoint in rodent cells. Mol. Cell. Biol. 15, 3722-3730.
Orrenius, S., and Zhivotovsky, B. (2006). The future of toxicology--does it matter how cells die? Chem. Res. Toxicol. 19, 729-733.
Othumpangat, S., Kashon, M., and Joseph, P. (2005). Eukaryotic translation initiation factor 4E is a cellular target for toxicity and death due to exposure to cadmium chloride. J. Biol. Chem. 280, 25162-25169.
Ovelgonne, J. H., Souren, J. E., Wiegant, F. A., and Van Wijk, R. (1995). Relationship between cadmium-induced expression of heatshock genes, inhibition of protein synthesis and cell death. Toxicology 99, 19-30.
Oyanagui, Y. (1976). Participation of superoxide anions at the prostaglandin phase of carrageenan foot-oedema. Biochem. Pharmacol. 25, 1465-1472.
Pan, Z., Damron, D., Nieminen, A. L., Bhat, M. B., and Ma, J. (2000). Depletion of intracellular Ca2+ by caffeine and ryanodine induces apoptosis of chinese hamster ovary cells transfected with ryanodine receptor. J. Biol. Chem. 275, 19978-19984.
Pan, Z. Q., Reardon, J. T., Li, L., Flores-Rozas, H., Legerski, R., Sancar, A., and Hurwitz, J. (1995). Inhibition of nucleotide excision repair by the cyclin-dependent kinase inhibitor p21. J. Biol. Chem. 270, 22008-22016.
Park, J. D., Cherrington, N. J., and Klaassen, C. D. (2002). Intestinal absorption of cadmium is associated with divalent metal transporter 1 in rats. Toxicol. Sci. 68, 288-294.
Pastorino, J. G., Chen, S. T., Tafani, M., Snyder, J. W., and Farber, J. L. (1998). The overexpression of Bax produces cell death upon induction of the mitochondrial permeability transition. J. Biol. Chem. 273, 7770-7775.
Paulovich, A. G., and Hartwell, L. H. (1995). A checkpoint regulates the rate of progression through S phase in S. cerevisiae in response to DNA damage. Cell 82, 841-847.
Pavlovic, S. Z., Ognjanovic, B. I., Stajn, A. S., Zikic, R. V., Saicic, Z. S., and Petrovic, V. M. (2001). The effect of coenzyme Q10 on blood ascorbic acid, vitamin E, an lipid peroxide in chronic cadmium intoxication. J. Environ. Pathol. Toxicol. Oncol. 20, 133-140.
Peng, C. Y., Graves, P. R., Thoma, R. S., Wu, Z., Shaw, A. S., and Piwnica-Worms, H. (1997). Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science 277, 1501-1505.
Peng, J., Marshall, N. F., and Price, D. H. (1998). Identification of a cyclin subunit required for the function of Drosophila P-TEFb. J. Biol. Chem. 273, 13855-13860.
Penninger, J. M., and Kroemer, G. (2003). Mitochondria, AIF and caspases--rivaling for cell death execution. Nat. Cell Biol. 5, 97-99.
Perez-Morga, D., Vanhollebeke, B., Paturiaux-Hanocq, F., Nolan, D. P., Lins, L., Homble, F., Vanhamme, L., Tebabi, P., Pays, A., Poelvoorde, P., Jacquet, A., Brasseur, R., and Pays, E. (2005). Apolipoprotein L-I promotes trypanosome lysis by forming pores in lysosomal membranes. Science 309, 469-472.
Perrino, B. A., and Chou, I. N. (1986). Role of calmodulin in cadmium-induced microtubule disassembly. Cell Biol. Int. Rep. 10, 565-573.
Peters, J. M., Duncan, J. R., Wiley, L. M., and Keen, C. L. (1995). Influence of antioxidants on cadmium toxicity of mouse preimplantation embryos in vitro. Toxicology 99, 11-18.
Pfeiffer, T., Schuster, S., and Bonhoeffer, S. (2001). Cooperation and competition in the evolution of ATP-producing pathways. Science 292, 504-507.
Piersma, A. H., Roelen, B., Roest, P., Haakmat-Hoesenie, A. S., van Achterberg, T. A., and Mummery, C. L. (1993). Cadmium-induced inhibition of proliferation and differentiation of embryonal carcinoma cells and mechanistic aspects of protection by zinc. Teratology 48, 335-341.
Pines, J. (1995). Cyclins and cyclin-dependent kinases: theme and variations. Adv. Cancer Res. 66, 181-212.
Planas-Bohne, F., and Klug, S. (1988). Uptake of cadmium into cells in culture. Toxicol Environ Chem 18, 38.
Polyak, K., Lee, M. H., Erdjument-Bromage, H., Koff, A., Roberts, J. M., Tempst, P., and Massague, J. (1994). Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell 78, 59-66.
Pong, K., Doctrow, S. R., and Baudry, M. (2000). Prevention of 1-methyl-4-phenylpyridinium- and 6-hydroxydopamine-induced nitration of tyrosine hydroxylase and neurotoxicity by EUK-134, a superoxide dismutase and catalase mimetic, in cultured dopaminergic neurons. Brain Res. 881, 182-189.
Pourahmad, J., Mihajlovic, A., and O'Brien, P. J. (2001). Hepatocyte lysis induced by environmental metal toxins may involve apoptotic death signals initiated by mitochondrial injury. Adv. Exp. Med. Biol. 500, 249-252.
Price, D. L., Sisodia, S. S., and Borchelt, D. R. (1998). Genetic neurodegenerative diseases: the human illness and transgenic models. Science 282, 1079-1083.
Pulido, M. D., and Parrish, A. R. (2003). Metal-induced apoptosis: mechanisms. Mutat. Res. 533, 227-241.
Putney, J. W., Jr. (1986). A model for receptor-regulated calcium entry. Cell Calcium 7, 1-12.
Raffray, M., and Cohen, G. M. (1997). Apoptosis and necrosis in toxicology: a continuum or distinct modes of cell death? Pharmacol. Ther. 75, 153-177.
Ragan, H. A., and Mast, T. J. (1990). Cadmium inhalation and male reproductive toxicity. Rev. Environ. Contam. Toxicol. 114, 1-22.
Rami, A. (2003). Ischemic neuronal death in the rat hippocampus: the calpain-calpastatin-caspase hypothesis. Neurobiol. Dis. 13, 75-88.
Rao, P. N., Freireich, E. J., Smith, M. L., and Loo, T. L. (1979). Cell cycle phase-specific cytotoxicity of the antitumor agent maytansine. Cancer Res. 39, 3152-3155.
Rao, R. V., Ellerby, H. M., and Bredesen, D. E. (2004). Coupling endoplasmic reticulum stress to the cell death program. Cell Death Differ. 11, 372-380.
Rathmell, J. C., Fox, C. J., Plas, D. R., Hammerman, P. S., Cinalli, R. M., and Thompson, C. B. (2003). Akt-directed glucose metabolism can prevent Bax conformation change and promote growth factor-independent survival. Mol. Cell. Biol. 23, 7315-7328.
Rathmell, J. C., Vander Heiden, M. G., Harris, M. H., Frauwirth, K. A., and Thompson, C. B. (2000). In the absence of extrinsic signals, nutrient utilization by lymphocytes is insufficient to maintain either cell size or viability. Mol. Cell 6, 683-692.
Rawlings, N. D., and Barrett, A. J. (1999). MEROPS: the peptidase database. Nucleic Acids Res 27, 325-331.
Rechsteiner, M., and Rogers, S. W. (1996). PEST sequences and regulation by proteolysis. Trends Biochem. Sci. 21, 267-271.
Reed, J. C. (1996). A day in the life of the Bcl-2 protein: does the turnover rate of Bcl-2 serve as a biological clock for cellular lifespan regulation? Leuk. Res. 20, 109-111.
Reed, J. C. (2002). Apoptosis-based therapies. Nat. Rev. Drug Discov. 1, 111-121.
Reynisdottir, I., Polyak, K., Iavarone, A., and Massague, J. (1995). Kip/Cip and Ink4 Cdk inhibitors cooperate to induce cell cycle arrest in response to TGF-beta. Genes Dev. 9, 1831-1845.
Rickert, P., Seghezzi, W., Shanahan, F., Cho, H., and Lees, E. (1996). Cyclin C/CDK8 is a novel CTD kinase associated with RNA polymerase II. Oncogene 12, 2631-2640.
Rong, Y., Doctrow, S. R., Tocco, G., and Baudry, M. (1999). EUK-134, a synthetic superoxide dismutase and catalase mimetic, prevents oxidative stress and attenuates kainate-induced neuropathology. Proc. Natl. Acad. Sci. U. S. A. 96, 9897-9902.
Safford, S. E., Oberley, T. D., Urano, M., and St Clair, D. K. (1994). Suppression of fibrosarcoma metastasis by elevated expression of manganese superoxide dismutase. Cancer Res. 54, 4261-4265.
Sakon, S., Xue, X., Takekawa, M., Sasazuki, T., Okazaki, T., Kojima, Y., Piao, J. H., Yagita, H., Okumura, K., Doi, T., and Nakano, H. (2003). NF-kappaB inhibits TNF-induced accumulation of ROS that mediate prolonged MAPK activation and necrotic cell death. EMBO J. 22, 3898-3909.
Salminen, U., Harjula, A. L., Maasilta, P. K., Romanska, H. M., Bishop, A. E., and Polak, J. M. (2001). Superoxide dismutase in development of obliterative bronchiolitis. Transplant. Proc. 33, 2477.
Salt, D. E., and Wagner, G. J. (1993). Cadmium transport across tonoplast of vesicles from oat roots. Evidence for a Cd2+/H+ antiport activity. J. Biol. Chem. 268, 12297-12302.
Salvemini, D., Riley, D. P., and Cuzzocrea, S. (2002). SOD mimetics are coming of age. Nat. Rev. Drug Discov. 1, 367-374.
Santos, F. W., Oro, T., Zeni, G., Rocha, J. B., do Nascimento, P. C., and Nogueira, C. W. (2004). Cadmium induced testicular damage and its response to administration of succimer and diphenyl diselenide in mice. Toxicol. Lett. 152, 255-263.
Saris, N. E., and Carafoli, E. (2005). A historical review of cellular calcium handling, with emphasis on mitochondria. Biochemistry (Mosc). 70, 187-194.
Sauer, J. M., Waalkes, M. P., Hooser, S. B., Kuester, R. K., McQueen, C. A., and Sipes, I. G. (1997). Suppression of Kupffer cell function prevents cadmium induced hepatocellular necrosis in the male Sprague-Dawley rat. Toxicology 121, 155-164.
Sauter, B., Albert, M. L., Francisco, L., Larsson, M., Somersan, S., and Bhardwaj, N. (2000). Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J. Exp. Med. 191, 423-434.
Schinzel, A. C., Takeuchi, O., Huang, Z., Fisher, J. K., Zhou, Z., Rubens, J., Hetz, C., Danial, N. N., Moskowitz, M. A., and Korsmeyer, S. J. (2005). Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. Proc. Natl. Acad. Sci. U. S. A. 102, 12005-12010.
Schmidt, M., Lu, Y., Liu, B., Fang, M., Mendelsohn, J., and Fan, Z. (2000). Differential modulation of paclitaxel-mediated apoptosis by p21Waf1 and p27Kip1. Oncogene 19, 2423-2429.
Schroeder, H. A. (1964). Cadmium Hypertension in Rats. Am. J. Physiol. 207, 62-66.
Schroeder, H. A. (1967). Cadmium, chromium, and cardiovascular disease. Circulation 35, 570-582.
Shaikh, Z. A., Vu, T. T., and Zaman, K. (1999). Oxidative stress as a mechanism of chronic cadmium-induced hepatotoxicity and renal toxicity and protection by antioxidants. Toxicol. Appl. Pharmacol. 154, 256-263.
Shao, R., Karunagaran, D., Zhou, B. P., Li, K., Lo, S. S., Deng, J., Chiao, P., and Hung, M. C. (1997). Inhibition of nuclear factor-kappaB activity is involved in E1A-mediated sensitization of radiation-induced apoptosis. J. Biol. Chem. 272, 32739-32742.
Sharpe, M. A., Ollosson, R., Stewart, V. C., and Clark, J. B. (2002). Oxidation of nitric oxide by oxomanganese-salen complexes: a new mechanism for cellular protection by superoxide dismutase/catalase mimetics. Biochem. J. 366, 97-107.
Shchepina, L. A., Popova, E. N., Pletjushkina, O. Y., and Chernyak, B. V. (2002). Respiration and mitochondrial membrane potential are not required for apoptosis and anti-apoptotic action of Bcl-2 in HeLa cells. Biochemistry (Mosc). 67, 222-226.
Shen, H. M., Dong, S. Y., and Ong, C. N. (2001). Critical role of calcium overloading in cadmium-induced apoptosis in mouse thymocytes. Toxicol. Appl. Pharmacol. 171, 12-19.
Sherr, C. J. (1994). G1 phase progression: cycling on cue. Cell 79, 551-555.
Sherr, C. J., and Roberts, J. M. (1995). Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev. 9, 1149-1163.
Shibuya, I., and Douglas, W. W. (1992). Calcium channels in rat melanotrophs are permeable to manganese, cobalt, cadmium, and lanthanum, but not to nickel: evidence provided by fluorescence changes in fura-2-loaded cells. Endocrinology 131, 1936-1941.
Shih, C. M., Ko, W. C., Wu, J. S., Wei, Y. H., Wang, L. F., Chang, E. E., Lo, T. Y., Cheng, H. H., and Chen, C. T. (2004). Mediating of caspase-independent apoptosis by cadmium through the mitochondria-ROS pathway in MRC-5 fibroblasts. J. Cell. Biochem. 91, 384-397.
Shih, C. M., Wu, J. S., Ko, W. C., Wang, L. F., Wei, Y. H., Liang, H. F., Chen, Y. C., and Chen, C. T. (2003). Mitochondria-mediated caspase-independent apoptosis induced by cadmium in normal human lung cells. J. Cell. Biochem. 89, 335-347.
Shimada, H., Shiao, Y. H., Shibata, M., and Waalkes, M. P. (1998). Cadmium suppresses apoptosis induced by chromium. J. Toxicol. Environ. Health A 54, 159-168.
Shimoda, R., Nagamine, T., Takagi, H., Mori, M., and Waalkes, M. P. (2001). Induction of apoptosis in cells by cadmium: quantitative negative correlation between basal or induced metallothionein concentration and apoptotic rate. Toxicol. Sci. 64, 208-215.
Shingu, M., Takahashi, S., Ito, M., Hamamatu, N., Suenaga, Y., Ichibangase, Y., and Nobunaga, M. (1994). Anti-inflammatory effects of recombinant human manganese superoxide dismutase on adjuvant arthritis in rats. Rheumatol. Int. 14, 77-81.
Shumilla, J. A., Wetterhahn, K. E., and Barchowsky, A. (1998). Inhibition of NF-kappa B binding to DNA by chromium, cadmium, mercury, zinc, and arsenite in vitro: evidence of a thiol mechanism. Arch. Biochem. Biophys. 349, 356-362.
Sidhu, M., Sharma, M., Bhatia, M., Awasthi, Y. C., and Nath, R. (1993). Effect of chronic cadmium exposure on glutathione S-transferase and glutathione peroxidase activities in rhesus monkey: the role of selenium. Toxicology 83, 203-213.
Sirover, M. A., and Loeb, L. A. (1976). Metal-induced infidelity during DNA synthesis. Proc. Natl. Acad. Sci. U. S. A. 73, 2331-2335.
Smith, T. J., Petty, T. L., Reading, J. C., and Lakshminarayan, S. (1976). Pulmonary effects of chronic exposure to airborne cadmium. Am. Rev. Respir. Dis. 114, 161-169.
Sohal, R. S., Agarwal, A., Agarwal, S., and Orr, W. C. (1995). Simultaneous overexpression of copper- and zinc-containing superoxide dismutase and catalase retards age-related oxidative damage and increases metabolic potential in Drosophila melanogaster. J. Biol. Chem. 270, 15671-15674.
Somji, S., Garrett, S. H., Sens, M. A., Gurel, V., and Sens, D. A. (2004). Expression of metallothionein isoform 3 (MT-3) determines the choice between apoptotic or necrotic cell death in Cd+2-exposed human proximal tubule cells. Toxicol. Sci. 80, 358-366.
St Clair, D. K., Oberley, T. D., Muse, K. E., and St Clair, W. H. (1994). Expression of manganese superoxide dismutase promotes cellular differentiation. Free Radic. Biol. Med. 16, 275-282.
Stallings, R. L., Crawford, B. D., Tobey, R. A., Tesmer, J., and Hildebrand, C. E. (1986). 5-Azacytidine-induced conversion to cadmium resistance correlates with early S phase replication of inactive metallothionein genes in synchronized CHO cells. Somat. Cell Mol. Genet. 12, 423-432.
Stark, M., Wolff, J. E., and Korbmacher, A. (1992). Modulation of glial cell differentiation by exposure to lead and cadmium. Neurotoxicol. Teratol. 14, 247-252.
Stohs, S. J., and Bagchi, D. (1995). Oxidative mechanisms in the toxicity of metal ions. Free Radic. Biol. Med. 18, 321-336.
Stowe, H. D., Wilson, M., and Goyer, R. A. (1972). Clinical and morphologic effects of oral cadmium toxicity in rabbits. Arch. Pathol. 94, 389-405.
Strehler, E. E., and Treiman, M. (2004). Calcium pumps of plasma membrane and cell interior. Curr. Mol. Med. 4, 323-335.
Sugden, K. D., and Martin, B. D. (2002). Guanine and 7,8-dihydro-8-oxo-guanine-specific oxidation in DNA by chromium(V). Environ. Health Perspect. 110 Suppl 5, 725-728.
Sumathi, R., Baskaran, G., and Varalakshmi, P. (1996). Relationship between glutathione and DL alpha-lipoic acid against cadmium-induced hepatotoxicity. Jpn. J. Med. Sci. Biol. 49, 39-48.
Suzuki, K., Hata, S., Kawabata, Y., and Sorimachi, H. (2004). Structure, activation, and biology of calpain. Diabetes 53 Suppl 1, S12-18.
Suzuki, K., and Sorimachi, H. (1998). A novel aspect of calpain activation. FEBS Lett. 433, 1-4.
Swandulla, D., and Armstrong, C. M. (1989). Calcium channel block by cadmium in chicken sensory neurons. Proc. Natl. Acad. Sci. U. S. A. 86, 1736-1740.
Syntichaki, P., and Tavernarakis, N. (2002). Death by necrosis. Uncontrollable catastrophe, or is there order behind the chaos? EMBO Rep. 3, 604-609.
Szuster-Ciesielska, A., Stachura, A., Slotwinska, M., Kaminska, T., Sniezko, R., Paduch, R., Abramczyk, D., Filar, J., and Kandefer-Szerszen, M. (2000). The inhibitory effect of zinc on cadmium-induced cell apoptosis and reactive oxygen species (ROS) production in cell cultures. Toxicology 145, 159-171.
Takagi, M. Y., Hayashi, H. Y., and Yoshida, T. Y. (2000). The effect of osmolarity on metabolism and morphology in adhesion and suspension chinese hamster ovary cells producing tissue plasminogen activator. Cytotechnology 32, 171-179.
Tamatani, M., Che, Y. H., Matsuzaki, H., Ogawa, S., Okado, H., Miyake, S., Mizuno, T., and Tohyama, M. (1999). Tumor necrosis factor induces Bcl-2 and Bcl-x expression through NFkappaB activation in primary hippocampal neurons. J. Biol. Chem. 274, 8531-8538.
Tanaka, H., Matsumura, I., Ezoe, S., Satoh, Y., Sakamaki, T., Albanese, C., Machii, T., Pestell, R. G., and Kanakura, Y. (2002). E2F1 and c-Myc potentiate apoptosis through inhibition of NF-kappaB activity that facilitates MnSOD-mediated ROS elimination. Mol. Cell 9, 1017-1029.
Tandon, S. K., Prasad, S., and Singh, S. (2002). Chelation in metal intoxication: influence of cysteine or N-acetyl cysteine on the efficacy of 2,3-dimercaptopropane-1-sulphonate in the treatment of cadmium toxicity. J. Appl. Toxicol. 22, 67-71.
Tandon, S. K., Singh, S., and Prasad, S. (1997). Influence of methionine administration during chelation of cadmium by CaNa 3 DTPA and DMPS in the rat. Environmental Toxicology and Pharmacology 3, 159-165.
Tandon, S. K., Singh, S., Prasad, S., Khandekar, K., Dwivedi, V. K., Chatterjee, M., and Mathur, N. (2003). Reversal of cadmium induced oxidative stress by chelating agent, antioxidant or their combination in rat. Toxicol. Lett. 145, 211-217.
Thevenod, F., Friedmann, J. M., Katsen, A. D., and Hauser, I. A. (2000). Up-regulation of multidrug resistance P-glycoprotein via nuclear factor-kappaB activation protects kidney proximal tubule cells from cadmium- and reactive oxygen species-induced apoptosis. J. Biol. Chem. 275, 1887-1896.
Thornberry, N. A., Bull, H. G., Calaycay, J. R., Chapman, K. T., Howard, A. D., Kostura, M. J., Miller, D. K., Molineaux, S. M., Weidner, J. R., Aunins, J., and et al. (1992). A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 356, 768-774.
Tsuchiya, K. (1969). Causation of Ouch-Ouch Disease (Itai-Itai Byo)--an introductory review. I. Nature of the disease. Keio J. Med. 18, 181-194.
Tsuzuki, K., Sugiyama, M., and Haramaki, N. (1994). DNA single-strand breaks and cytotoxicity induced by chromate(VI), cadmium(II), and mercury(II) in hydrogen peroxide-resistant cell lines. Environ. Health Perspect. 102 Suppl 3, 341-342.
Ulander, A., and Axelson, O. (1974). Letter: Measurement of blood-cadmium levels. Lancet 1, 682-683.
Vercammen, D., Beyaert, R., Denecker, G., Goossens, V., Van Loo, G., Declercq, W., Grooten, J., Fiers, W., and Vandenabeele, P. (1998). Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. J. Exp. Med. 187, 1477-1485.
Vermeulen, K., Van Bockstaele, D. R., and Berneman, Z. N. (2003). The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif. 36, 131-149.
Vidal, S. M., Malo, D., Vogan, K., Skamene, E., and Gros, P. (1993). Natural resistance to infection with intracellular parasites: isolation of a candidate for Bcg. Cell 73, 469-485.
Visser, G. J., Peters, P. H., and Theuvenet, A. P. (1993). Cadmium ion is a non-competitive inhibitor of red cell Ca(2+)-ATPase activity. Biochim. Biophys. Acta 1152, 26-34.
von Zglinicki, T., Edwall, C., Ostlund, E., Lind, B., Nordberg, M., Ringertz, N. R., and Wroblewski, J. (1992). Very low cadmium concentrations stimulate DNA synthesis and cell growth. J. Cell Sci. 103 ( Pt 4), 1073-1081.
Waalkes, M. P., and Misra, R. R. (1996). In Toxicology of Metals (L. W. Chang, Ed.). CRC Press, Boca Raton, FL.
Waalkes, M. P., Rehm, S., and Devor, D. E. (1997). The Effects of Continuous Testosterone Exposure on Spontaneous and Cadmium-Induced Tumors in the Male Fischer (F344/NCr) Rat: Loss of Testicular Response. Toxicol. Appl. Pharmacol. 142, 40-46.
Waalkes, M. P., Rehm, S., Riggs, C. W., Bare, R. M., Devor, D. E., Poirier, L. A., Wenk, M. L., and Henneman, J. R. (1989). Cadmium carcinogenesis in male Wistar [Crl:(WI)BR] rats: dose-response analysis of effects of zinc on tumor induction in the prostate, in the testes, and at the injection site. Cancer Res. 49, 4282-4288.
Waalkes, M. P., Rehm, S., Riggs, C. W., Bare, R. M., Devor, D. E., Poirier, L. A., Wenk, M. L., Henneman, J. R., and Balaschak, M. S. (1988). Cadmium carcinogenesis in male Wistar [Crl:(WI)BR] rats: dose-response analysis of tumor induction in the prostate and testes and at the injection site. Cancer Res. 48, 4656-4663.
Waga, S., Li, R., and Stillman, B. (1997). p53-induced p21 controls DNA replication. Leukemia 11 Suppl 3, 321-323.
Waisberg, M., Joseph, P., Hale, B., and Beyersmann, D. (2003). Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology 192, 95-117.
Waldmann, R., Champigny, G., Voilley, N., Lauritzen, I., and Lazdunski, M. (1996). The mammalian degenerin MDEG, an amiloride-sensitive cation channel activated by mutations causing neurodegeneration in Caenorhabditis elegans. J. Biol. Chem. 271, 10433-10436.
Waldo, G. S., and Penner-Hahn, J. E. (1995). Mechanism of manganese catalase peroxide disproportionation: determination of manganese oxidation states during turnover. Biochemistry (Mosc). 34, 1507-1512.
Walker, D. H., and Maller, J. L. (1991). Role for cyclin A in the dependence of mitosis on completion of DNA replication. Nature 354, 314-317.
Walker, N. I., Harmon, B. V., Gobe, G. C., and Kerr, J. F. (1988). Patterns of cell death. Methods Achiev. Exp. Pathol. 13, 18-54.
Wang, K. K. (2000). Calpain and caspase: can you tell the difference? Trends Neurosci. 23, 20-26.
Wang, X. (2001). The expanding role of mitochondria in apoptosis. Genes Dev. 15, 2922-2933.
Wang, Z., and Templeton, D. M. (1996). Cellular factors mediate cadmium-dependent actin depolymerization. Toxicol. Appl. Pharmacol. 139, 115-121.
Wardeska, J. G., Viglione, B., and Chasteen, N. D. (1986). Metal ion complexes of apoferritin. Evidence for initial binding in the hydrophilic channels. J. Biol. Chem. 261, 6677-6683.
Waring, P. (2005). Redox active calcium ion channels and cell death. Arch. Biochem. Biophys. 434, 33-42.
Watjen, W., Cox, M., Biagioli, M., and Beyersmann, D. (2002). Cadmium-induced apoptosis in C6 glioma cells: mediation by caspase 9-activation. Biometals 15, 15-25.
Watson, A. J., Askew, J. N., and Benson, R. S. (1995). Poly(adenosine diphosphate ribose) polymerase inhibition prevents necrosis induced by H2O2 but not apoptosis. Gastroenterology 109, 472-482.
Wei, M. C., Lindsten, T., Mootha, V. K., Weiler, S., Gross, A., Ashiya, M., Thompson, C. B., and Korsmeyer, S. J. (2000). tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev. 14, 2060-2071.
Wei, M. C., Zong, W. X., Cheng, E. H., Lindsten, T., Panoutsakopoulou, V., Ross, A. J., Roth, K. A., MacGregor, G. R., Thompson, C. B., and Korsmeyer, S. J. (2001). Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292, 727-730.
Werns, S. W., Simpson, P. J., Mickelson, J. K., Shea, M. J., Pitt, B., and Lucchesi, B. R. (1988). Sustained limitation by superoxide dismutase of canine myocardial injury due to regional ischemia followed by reperfusion. J. Cardiovasc. Pharmacol. 11, 36-44.
Wester, P. O. (1974). Trace element balances in relation to variations in calcium intake. Atherosclerosis 20, 207-215.
Whitaker, M., and Larman, M. G. (2001). Calcium and mitosis. Semin. Cell Dev. Biol. 12, 53-58.
Wispriyono, B., Matsuoka, M., Igisu, H., and Matsuno, K. (1998). Protection from cadmium cytotoxicity by N-acetylcysteine in LLC-PK1 cells. J. Pharmacol. Exp. Ther. 287, 344-351.
Woodgate, A., MacGibbon, G., Walton, M., and Dragunow, M. (1999). The toxicity of 6-hydroxydopamine on PC12 and P19 cells. Brain Res. Mol. Brain Res. 69, 84-92.
Xie, J., and Shaikh, Z. A. (2006). Cadmium-Induced Apoptosis in Rat Kidney Epithelial Cells Involves Modulation of NF-{kappa}B Activity. Toxicol. Sci.
Xiong, Z. G., Zhu, X. M., Chu, X. P., Minami, M., Hey, J., Wei, W. L., MacDonald, J. F., Wemmie, J. A., Price, M. P., Welsh, M. J., and Simon, R. P. (2004). Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell 118, 687-698.
Xu, K., Tavernarakis, N., and Driscoll, M. (2001). Necrotic cell death in C. elegans requires the function of calreticulin and regulators of Ca(2+) release from the endoplasmic reticulum. Neuron 31, 957-971.
Yamashima, T. (2004). Ca2+-dependent proteases in ischemic neuronal death: a conserved 'calpain-cathepsin cascade' from nematodes to primates. Cell Calcium 36, 285-293.
Yanagiya, T., Imura, N., Enomoto, S., Kondo, Y., and Himeno, S. (2000). Suppression of a high-affinity transport system for manganese in cadmium-resistant metallothionein-null cells. J. Pharmacol. Exp. Ther. 292, 1080-1086.
Yanagiya, T., Imura, N., Kondo, Y., and Himeno, S. (1999). Reduced uptake and enhanced release of cadmium in cadmium-resistant metallothionein null fibroblasts. Life Sci. 65, PL177-182.
Yang, G., Chan, P. H., Chen, J., Carlson, E., Chen, S. F., Weinstein, P., Epstein, C. J., and Kamii, H. (1994). Human copper-zinc superoxide dismutase transgenic mice are highly resistant to reperfusion injury after focal cerebral ischemia. Stroke 25, 165-170.
Yang, J., Winkler, K., Yoshida, M., and Kornbluth, S. (1999). Maintenance of G2 arrest in the Xenopus oocyte: a role for 14-3-3-mediated inhibition of Cdc25 nuclear import. EMBO J. 18, 2174-2183.
Yang, J. L., Chao, J. I., and Lin, J. G. (1996). Reactive oxygen species may participate in the mutagenicity and mutational spectrum of cadmium in Chinese hamster ovary-K1 cells. Chem. Res. Toxicol. 9, 1360-1367.
Yermolaieva, O., Leonard, A. S., Schnizler, M. K., Abboud, F. M., and Welsh, M. J. (2004). Extracellular acidosis increases neuronal cell calcium by activating acid-sensing ion channel 1a. Proc. Natl. Acad. Sci. U. S. A. 101, 6752-6757.
Yiin, S. J., Chern, C. L., Sheu, J. Y., and Lin, T. H. (2000). Cadmium-induced liver, heart, and spleen lipid peroxidation in rats and protection by selenium. Biol. Trace Elem. Res. 78, 219-230.
Ying, W., Alano, C. C., Garnier, P., and Swanson, R. A. (2005). NAD+ as a metabolic link between DNA damage and cell death. J. Neurosci. Res. 79, 216-223.
Ying, W., Garnier, P., and Swanson, R. A. (2003). NAD+ repletion prevents PARP-1-induced glycolytic blockade and cell death in cultured mouse astrocytes. Biochem. Biophys. Res. Commun. 308, 809-813.
Yoon, T. P., and Jacobsen, E. N. (2003). Privileged chiral catalysts. Science 299, 1691-1693.
Yoshizaki, N., Mogi, Y., Muramatsu, H., Koike, K., Kogawa, K., and Niitsu, Y. (1994). Suppressive effect of recombinant human Cu, Zn-superoxide dismutase on lung metastasis of murine tumor cells. Int. J. Cancer 57, 287-292.
You, M., Ku, P. T., Hrdlickova, R., and Bose, H. R., Jr. (1997). ch-IAP1, a member of the inhibitor-of-apoptosis protein family, is a mediator of the antiapoptotic activity of the v-Rel oncoprotein. Mol. Cell. Biol. 17, 7328-7341.
Yu, C. W., Chen, H. C., and Lin, L. Y. (1998). Transcription of metallothionein isoform promoters is differentially regulated in cadmium-sensitive and -resistant CHO cells. J. Cell. Biochem. 68, 174-185.
Yu, S. W., Wang, H., Poitras, M. F., Coombs, C., Bowers, W. J., Federoff, H. J., Poirier, G. G., Dawson, T. M., and Dawson, V. L. (2002). Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 297, 259-263.
Yuan, C., Kadiiska, M., Achanzar, W. E., Mason, R. P., and Waalkes, M. P. (2000). Possible role of caspase-3 inhibition in cadmium-induced blockage of apoptosis. Toxicol. Appl. Pharmacol. 164, 321-329.
Yuan, J., Shaham, S., Ledoux, S., Ellis, H. M., and Horvitz, H. R. (1993). The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-converting enzyme. Cell 75, 641-652.
Zazueta, C., Sanchez, C., Garcia, N., and Correa, F. (2000). Possible involvement of the adenine nucleotide translocase in the activation of the permeability transition pore induced by cadmium. Int. J. Biochem. Cell Biol. 32, 1093-1101.
Zhang, Z., Huang, C., Li, J., Leonard, S. S., Lanciotti, R., Butterworth, L., and Shi, X. (2001a). Vanadate-induced cell growth regulation and the role of reactive oxygen species. Arch. Biochem. Biophys. 392, 311-320.
Zhang, Z., Leonard, S. S., Wang, S., Vallyathan, V., Castranova, V., and Shi, X. (2001b). Cr (VI) induces cell growth arrest through hydrogen peroxide-mediated reactions. Mol. Cell. Biochem. 222, 77-83.
Zhong, Z. J., Troll, W., Koenig, K. L., and Frenkel, K. (1990). Carcinogenic sulfide salts of nickel and cadmium induce H2O2 formation by human polymorphonuclear leukocytes. Cancer Res. 50, 7564-7570.
Zong, W. X., Ditsworth, D., Bauer, D. E., Wang, Z. Q., and Thompson, C. B. (2004). Alkylating DNA damage stimulates a regulated form of necrotic cell death. Genes Dev. 18, 1272-1282.
Zong, W. X., and Thompson, C. B. (2006). Necrotic death as a cell fate. Genes Dev. 20, 1-15.