簡易檢索 / 詳目顯示

研究生: 蕭鈺翰
Hsiao, Yu-Han
論文名稱: 升級缺乏競爭力產品之最大化潛在客戶數
Upgrading Uncompetitive Products to Maximize the Number of Potential Customers
指導教授: 陳良弼
Chen, L.P.
口試委員: 吳宜鴻
Wu, Yi-Hong
彭文志
Peng, Wen-Chih
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2013
畢業學年度: 102
語文別: 英文
論文頁數: 26
中文關鍵詞: 天際線支配最大化潛在客戶更新
外文關鍵詞: skyline, dominate, maximize, potential customer, upgrade
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來已經有很多解決天際線問題的方法被提出。從市場的觀點來看,支配的概念有助於選擇具競爭力的產品。廠商可能會想要在一筆有限的預算下更新一些不具競爭力的產品,並獲得最多的潛在客戶數。在這篇論文中我們嘗試解決一個新的問題在於這些不具競爭力的產品之中更新他們成為不被現存產品所支配並得到最大的潛在客戶數。給了兩組資料集A和P以及一個有限的預算M,而A中為不具競爭力的產品集合,P中為具有競爭力的產品集合;我們將從P中挑選出一些產品能夠更新成為不被A中產品所支配的產品並且更新後的產品能得到最大的潛在客戶數。我們提出了近似的演算法建置在一個能夠群集相似的點有趣的資料結構以及能夠排除更新花費較大的產品上。我們在實驗部分做三組不同分布的造資料集以及一組實際資料集。實驗結果顯示近似的方法能夠比基本的算法更有效率且在也有不錯的精確度。


    Recently, many approaches on solving the skyline problems have been proposed. From the perspective of marketing, the domination concept is conducive to choose the competitive products. A product provider may want to know which uncompetitive products can be upgraded to gain much more potential customers under a limited budget. In this paper, we make the first attempt to address a new problem on upgrading uncompetitive products to maximize the number of potential customers, which returns a set of products that are not dominated by any existing products and maximize the number of potential customers. Given two data sets A and P, the former represents a set of competitive products while the latter represents a set of uncompetitive products waiting for being upgraded, and a limited budget of M, we return some products in P that are upgraded to avoid being dominated by any products in A under the condition of M and these products can maximize the number of potential customers. We propose an approximate algorithm based on an interesting index structure to group together the similar products and prune the other products that may cost too much. A series of experiments on a real dataset and three synthetic datasets are performed. The experiment results show that the approximate method is more efficient than a basic method and also has a good accurate rate.

    Acknowledgement i Abstract ii 摘要 iii Table of Contents iv List of Figures v 1 Introduction 5 2 Related Works 7 3 Preliminaries 8 3.1 Problem Formulation 8 3.1 Difficulty 9 4 Approaches to Upgrading Uncompetitive Products to Maximize the Number of the Potential Customers 11 4.1 Observation 11 4.2 Index Structure 14 4.3 The Region Approximate Method 15 5 Experiments 20 5.1 Experiment Setup 20 5.2 Experiment Results 22 6 Conclusions 28 References 29

    [BK01] Stephan Börzsönyi, Donald Kossmann, Konrad Stocker: The Skyline Operator. In: ICDE 2001, pp.421- 430.
    [BKS01] Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: ICDE 2001, pp.421- 430.
    [CCA09] P. Cortez, A. Cerdeira, F. Almeida, T. Matos, and J. Reis. Modeling wine preferences by data mining from physicochemical properties. In: DSS 2009, pp.547- 553.
    [CGG03] Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with presorting. In: ICDE 2003, pp.717- 816.
    [DS07] Evangelos Dellis, Bernhard Seeger: Efficient Computation of Reverse Skyline Queries. In: VLDB 2007, pp.291- 302.
    [GSG05] Godfrey, P., Shipley, R., Gryz, J.: Maximal vector computation in large data sets. In: VLDB 2005, pp.229- 240.
    [HC12] Hua Lu, Christian S. Jensen: Upgrading Uncompetitive Products Economically. In: ICDE 2012, pp.977- 988.
    [HL06] Zhiyong Huang, Hua Lu, Beng Chin Ooi, Anthony K. H. Tung: Continuous Skyline Queries for Moving Objects. In: TKDE 2008, pp.1645- 1658.
    [JY08] S. Jang, J. Yoo. Processing Continuous Skyline Queries in Road Networks. In: CSA 2008, pp.353- 356.
    [KRR02] Kossmann, D., Ramsak, F., Rost, S.: Shooting starts in the sky: An online algorithm for skyline queries. In: VLDB 2002, pp.275- 286.
    [LZL07] Lee, K.C.K., Zheng, B., Li, H., Lee, W.C.: Approaching the skyline in Z order. In: VLDB 2007, pp.279- 290.
    [PT05] Dimitris Papadias, Yufei Tao, Greg Fu, Bernhard Seeger: Progressive skyline computation in database systems. In: TODS 2005, pp.41- 82.
    [SB08] Dimitris Sacharidis, Panagiotis Bouros, Timos K. Sellis: Caching Dynamic Skyline Queries. In: SSDBM 2008, pp.455- 472.
    [UCI] UC Irvine Machine Learning Repository. http://archive.ics.uci.edu/ml/.
    [WW11] Wen-Chi Wang, En Tzu Wang, Arbee L. P. Chen: Dynamic Skylines Considering Range Queries. In: DASFAA 2011, pp.235- 250.
    [WWP11] Q. Wan, R. C.-W. Wong, and Y. Peng. Finding top-k profitable products.
    In: ICDE 2011, pp.1055- 1066.
    [ZMC09] Zhang, S., Mamoulis, N., Cheung, D.W.: Scalable skyline computation using object-based space partitioning. In: SIGMOD 2009, pp.483- 494.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE