研究生: |
鄭力行 Li-Shing Cheng |
---|---|
論文名稱: |
動態氧化鋯被覆處理之敏化304不□鋼於高溫純水環境之沿晶應力腐蝕裂縫成長速率研究 Intergranular Stress Corrosion Crack Growth Rate of Sensitized Type 304 Stainless Steel with Dynamic ZrO2 coating in Boiling Water Reactor environment |
指導教授: |
蔡春鴻
Chueng-Horng Tsai 葉宗洸 Tsung-Kuang Yeh |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2005 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 95 |
中文關鍵詞: | 裂縫成長速率 、沿晶應力腐蝕龜裂 、加氫水化學 、動態熱水沈積抑制性被覆 、304不□鋼 |
外文關鍵詞: | crack growth rate, intergranular stress corrosion cracking, hydrogen water chemistry, dynamic hydrothermal inhibitive deposition, 304 stainless steel |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近十多年來,為減緩沸水式反應器 (Boiling Water Reactor, BWR) 組件的沿晶應力腐蝕龜裂 (Intergranular Stress Corrosion Cracking, IGSCC) 與輻射促進應力腐蝕龜裂 (Irradiation-Assisted Stress Corrosion Cracking, IASCC) 問題,已有許多方式被提出討論。加氫水化學 (Hydrogen Water Chemistry, HWC) 技術是在飼水中注氫來降低基材金屬的電化學腐蝕電位 (Electrochemical Corrosion Potential, ECP),已證實能有效防制IGSCC與IASCC的發生。然而,HWC技術在高注氫量下,會帶來升高管路輻射劑量的副作用,於是增益或取代HWC的被覆技術接著發展出來,其中以催化性被覆及抑制性被覆最為普遍。前者是利用貴重金屬催化氫的氧化反應,以促進HWC的效益,由於效果明顯,已有超過四十座核電廠使用;抑制性被覆則是在組件表面形成一阻絕被覆,以降低金屬表面氧化還原反應的速率,進而降低不□鋼組件的腐蝕速率。
過去本實驗室在模擬反應器水環境下以靜態熱水沉積法進行氧化鋯 (ZrO2) 抑制性被覆,研究結果顯示其對降低不□鋼組件的裂縫成長速率 (Crack Growth Rate, CGR) 有相當的成效,為進一步探討抑制性被覆技術對不□鋼組件的影響,並針對未來實際應用的情形,本實驗改以動態熱水沉積法進行抑制性被覆,研究水流對被覆效果的影響。
本研究結果顯示,利用動態熱水沉積法進行抑制性被覆,氧化鋯顆粒將更容易藉由水流帶到試片表面吸附,甚至進入裂縫內部直接進行抑制。在正常水化學環境下,施加抑制性被覆能使裂縫成長速率減緩為原來的一半,甚至達四分之一,證實了抑制性被覆對IGSCC的防蝕效益;但在加氫水化學環境下,氧化鋯的抑制效果不若NWC條件下明顯,此差異將在文中提出討論。
參考文獻
(1) F. A. Nichols, “How does on predict and measure radiation damage”, Nuclear Technology, Vol.40, aug.1978
(2) P. L. Andresen and C. L. Briant, Corrosion-June, (1989)p448~463
(3) R. Katsura, M. Kodama, and S. Nishimura, Corrosion-May, (1992) p.384~390
(4) L. G. Ljungberg, Nuclear Engineering and Design 81(1984)121~125
(5) R. L. Cowen, Nuclear Engineering International, January, (1986)p.26
(6) D. D. Macdonald, “Viability of Hydrogen Water Chemistry for Protecting In-Vessel Components of Boiling Water Reactors”, Corrosion, Vol.48, No.3, p.194(1992)
(7) Anders Molander et al., “ Corrosion Potential Monitoring in Swedish BWRs on Htdrogen Water Chemistry”, Ninth International Symposium on Environmental Degradation of Materials in Nuclear Power Systems- Water Reactors, edited by F. P. Ford, S. M. Bruemmer, and G. S. Was, TMS, 1999, p.453~460
(8) K. Nakata, S.Shimanuki, H. Anzai, M. Fuse, and S. Hattori, Corrosion, Vol.49, No.11,(1993)p.903~909
(9) L. G. Ljungberg, D. Cubicciotti, and I. Trolle, Corrosion-Vol. 42, No.5, May 1986
(10) A. Jenssen and M. König, “Influence of Environmental and Mechanical Factors on the Crack Growth Rate of Austenitic Materials under Simulated BWR Conditions”
(11) P. L. Andresen, “Factors Governing The Prediction of LWR Component SCC Behavior from Laboratory Data”, CORROSION/99, paper no.145, Houston, TX, NACE International
(12) R. L. Cowan and E. Kiss, “Optimizing BWR Water Chemistry”, 6th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, 1993
(13) T. K. Yeh and F. Chu, Nuclear Science and Engineering: 139, 221-233 (2001)
(14) P. L. Andresen and T. Angeliu, Corrosion96, No. 84
(15) Y. J. Kim, Corrosion- May 1999, p.456-461
(16) Y. J. Kim, Corrosion- February 2002, p. 108-112
(17) P. L. Andresen, Corrosion95, No.412
(18) 林盈吉, 鉑覆膜之敏化304不□鋼於高溫水中應力腐蝕龜裂之研究, 國立清華大學碩士論文, 1999年八月
(19) Y. J. Kim and P. L. Andresen, Corrosion- December 1998, p.1012-1017
(20) X. Zhou et al., Corrosion Science, Vol. 40, No.8, p.1349-1362, 1998
(21) Z. F. Zhou et al., “Hydrothermal Deposition of Zirconia Coating on BWR Materials for IGSCC Protection”,
(22) T. K. Yeh et al., Journal of Nuclear and Technology, Vol.39, No.5, p.531-539, May 2002
(23) T. K. Yeh et al., Journal of Nuclear and Technology, Vol.42, No.5, p.462-469, May 2005
(24) 陳志宏, 氧化鋯被覆處理304不□鋼在高溫水溶液之應力腐蝕裂縫成長速率研究, 國立清華大學碩士論文, 2004年1月
(25) M.G. Fontana, Corrosion Engineering, 3rd ed., McGraw-Hill International
(26) H. H. Uhlig, R. W. Revie, Corrosion and Corrosion Control, 3rd ed.
(27) Vikram N. Shah, P. E. Macdonald, eds, “ Aging and Life Extension of Major LWR Components”, Elsevier, New York, 1993
(28) S. Wang, T. Shoji and N. Kawaguchi, Corrosion-Vol. 61, No.2(2005)
(29) T. K. Yeh, C. H. Tsai and Y. H. Cheng, “ The Influence of Dissolved Hydrogen on the Corrosion of Type 304 SS Treated with Inhibitive Chemicals in High Temperature Pure Water”, Journal of Nuclear Science and Technology, Vol. 42, No. 5, p.462~469(May 2005)
(30) B. Stellwag, Corrosion Science, Vol.40, No.3, p.337-370, 1998
(31) Robertson, Corrosion Science, Vol.32, No.4, p.443-465, 1991
(32) C. Degueldre et al., Journal of Nuclear Materials 252 (1998) 22-27
(33) Y. J. Kim, Corrosion-Vol. 55, No.1 (1999)
(34) Y. J. Kim, Corrosion-Vol.51, No.11(1995)
(35) S. Uchida et al., “Effects of Hydrogen Peroxide on Corrosion of SS in High Temperature Water”, Water Chemistry of Nuclear Reactor Systems, Oct. (2004)
(36) C. S. Kumai and T. M. Devine, “Oxidation of Iron in 288℃, Oxygen-Containing Water”, Corrosion-Vol.61, No3, 2002, NACE International
(37) P. Ford et al., “Development and Use of a Predictive Model of Crack Propagation in 304/316L, A533B/A508 and Inconel 600/182 Alloys in 288℃ Water”, Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, 1988
(38) F. P. Ford et al., “Stress Corrosion Cracking of Low Alloy Steels under BWR Conditions; Assessment of CHR Algorithms”, 9th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, 1999
(39) D. D. Macdonald and M. Urquidi-Macdonald, “A Coupled Environment Model for SCC in Sensitized Type 304 SS in LWR Environment”, Corrosion Science, Vol.32, No.1, p.51-81, 1991
(40) M. P. Manahan, D. D. Macdonald and A. J. Peterson, Jr, Corrosion Science, Vol. 37, No.1, p.189-208, 1995
(41) D. D. Macdonald et al., “Theoretical Estimation of CGRs in Type 304 SS in BWR Coolant Environments”, Corrosion-October 1996
(42) M. Gomez-Duran, D. D. Macdonald, Corrosion Science 45 (2003) p.1455-1471
(43) A. Turnbull, “Modeling of the Chemistry and Electrochemistry in Cracks- A Review”, Corrosion-Vol.57, No.2 (2001)
(44) Y. J. Kim, “Effect of Water Chemistry on Corrosion Behavior of 304 SS in 288℃ Water”,
(45) Y. J. Kim, Corrosion- March 2002, p.208-215
(46) S. Uchida et al., Journal of Nuclear Science and Technology, Vol.35, No.4, p.301-308 (April 1998)
(47) S. Uchida et al., Journal of Nuclear Science and Technology, Vol.37, No.3, p.257-266 (March 2000)
(48) Y. Wada et al., Journal of Nuclear Science and Technology, Vol.37, No.10, p.901-912 (October 2000)
(49) E. Kikuchi et al., Corrosion-April, (1997)p.306~311
(50) M. Sakai et al., “SCC Behavior Observed by SSRT under an ECP Controlled by Either Oxygen or Hydrogen Peroxide Controlled BWR Chemistry with High Flow Rate Conditions”, 10th International Conference on Degradation of Materials in Nuclear Power Systems-Water Reactors
(51) Y. Wada et al., “ The ECP and SCC of 304 SS under Low Hydrogen Peroxide Concentrations”, 9th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems- Water Reactors, 1999
(52) P. L. Andresen and C. L. Briant, Corrosion- June 1989. p.448-463
(53) T. Sato and T. Shoji, “Effects of Specimen Size and Thickness on CGR in High Temperature Waters”, 11th Int. Conf. Environmental Degradation of Materials in Nuclear Systems, Stevenson, WA, Aug. 10-14, 2003, p.862-869
(54) T. Shoji et al., “Quantifacation of Yield Strength Effects on IGSCC of Austenitic SS in High Temperature Water”, 11th Int. Conf. Environmental Degradation of Materials in Nuclear Systems, Stevenson, WA, Aug. 10-14, 2003, p.834-844
(55) Marc. Vankeerberghen, D. D. Macdonald, Corrosion Science 44 (2002) p.1425-1441
(56) H. S. Kwon et al., Corrosion-May 2000 p.482-491
(57) P. L. Andresen et al., “SCC Growth Rate Behavior of Various Grades of Cold Worked SS in High Temperature Water”, Corrosion 2002, paper no. 02511