研究生: |
楊佳玲 |
---|---|
論文名稱: |
噴霧裂解法製備可調變折射率之鈦/鋁混合薄膜之研究 The Development of Novel Process for (Al2O3)x(TiO2)1-x Thin Films with Tunable Refractivity by Spray Pyrolysis Method |
指導教授: | 陳福榮 |
口試委員: |
林澤勝
孫文檠 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2012 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 65 |
中文關鍵詞: | 噴霧裂解法 、鈦/鋁混合薄膜 、背表面鈍化堆疊 |
外文關鍵詞: | Spray pyrolysis, (Al2O3)x(TiO2)1-x, rear surface passivation stack |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用噴霧裂解法成功地製備可調控的鈦/鋁混合薄膜。藉由製程溫度和前驅物溶液的比例可以調控鈦/鋁混合薄膜的折射率、成份和電性等性質。在製程溫度低於380 ℃時,鈦/鋁混合薄膜的折射率大約維持在2.2,此時的折射率與純二氧化鈦的折射率相當接近。從EDX成份分析中也發現,此時薄膜的成份大多為鈦,且和前驅物的比例並沒有太大的關係。然而,當製程溫度高於380 ℃後,鈦/鋁混合薄膜的折射率開始產生改變,鈦/鋁混合薄膜內的鋁含量隨著前驅物內鋁的含量而增加,且此時混合薄膜的折射率產生變化,鈦/鋁混合薄膜的折射率隨著薄膜內鈦含量減少成線性的下降,此外,薄膜內的鈦和鋁的比例和前驅物內的鈦/鋁比例相當接近。少數載子生命週期的測量發現,隨著製程溫度增加使的薄膜內鋁含量增加讓鈦/鋁混合薄膜的載子生命週期增加。
我們利用的氧化鋁堆疊鈦/鋁混合薄膜之背部堆疊結構,做為鈦鋁混合薄膜應用驗證。由實驗結果發現,相較於鋁膠燒結後的反射率,此氧化鋁堆疊鈦/鋁混合薄膜結構使反射率有大幅的提升,反射率在長波長1200 nm下由25%提升至51%。預期反射率的上升能使短路電流增加,使太陽能電池效率提升。
Spray pyrolysis has been used to deposit (Al2O3)x(TiO2)1-x thin films with controllable properties successfully in this work. The deposition temperatures and the ratios between titanium precursors and aluminum precursors are main parameters controlling film properties, including the refractive index, components of the thin films and the electrical properties. When the deposition temperature is below 380 oC, the refractive index of (Al2O3)x(TiO2)1-x thin films are about 2.2 which is close to refractive index of titanium dioxide. From energy-dispersive X-ray spectroscopy (EDX), the components of (Al2O3)x(TiO2)1-x thin films with various ratio precursors have high content of titanium. As the deposition temperature increases higher than 380 oC, the refractive index of (Al2O3)x(TiO2)1-x thin films are decreasing with the Al precursors increasing. The EDX shows that the molar ratio of titanium and aluminum in thin films are closed to the ratio in the precursor’s solutions.
From the lifetime measurement, the higher deposition temperatures have higher lifetime and the lifetime of the (Al2O3)x(TiO2)1-x thin films increase with the contents of aluminum in the thin film increasing.
In order to know quality of (Al2O3)x(TiO2)1-x thin film, we implement this dielectric rear surface passivation stack:Al2O3 /(Al2O3)x(TiO2)1-x stack. Comparison from only Al paste for rear stack, our dielectric rear surface passivation stack can increase rear reflectance (at wavelength 1200 nm ) from 25% to 51%. This can be increase short-circuit current, and then increase efficiency.
[1]Muñoz, D.; Desrues, T.; Ribeyron, P.-J., a-Si:H/c-Si Heterojunction Solar Cells: A Smart Choice for High Efficiency Solar Cells. “Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells”, 0,2012, 539-572.
[2]Blakers, A. W.; Wang, A.; Milne, A. M.; Zhao, J.; Green, M. A., “22.8% efficient silicon solar cell.” Applied Physics Letters,55, 1989, 1363-1365.
[3]Zhao, J.; Wang, A.; Altermatt, P. P.; Wenham, S. R.; Green, M. A., “24% efficient perl silicon solar cell: Recent improvements in high efficiency silicon cell research.” Solar Energy Materials and Solar Cells,41–42, 1996, 87-99.
[4]Dauwe, S.; Mittelstädt, L.; Metz, A.; Hezel, R., “Experimental evidence of parasitic shunting in silicon nitride rear surface passivated solar cells.” Progress in Photovoltaics: Research and Applications,10, 2002, 271-278.
[5]Schmidt, J.; Merkle, A.; Brendel, R.; Hoex, B.; de Sanden, M. C. M. v.; Kessels, W. M. M., “Surface passivation of high-efficiency silicon solar cells by atomic-layer-deposited Al2O3.” Progress in Photovoltaics: Research and Applications,16, 2008, 461-466.
[6]Dullweber, T.; Gatz, S.; Hannebauer, H.; Falcon, T.; Hesse, R.; Schmidt, J.; Brendel, R., “Towards 20% efficient large-area screen-printed rear-passivated silicon solar cells.” Progress in Photovoltaics: Research and Applications, 20,2011,630-638.
[7]Hofmann, M.; Schmidt, C.; Kohn, N.; Rentsch, J.; Glunz, S. W.; Preu, R., “Stack system of PECVD amorphous silicon and PECVD silicon oxide for silicon solar cell rear side passivation.” Progress in Photovoltaics: Research and Applications,16, 2008, 509-518.
[8]Pradhan, S. K.; Reucroft, P. J.; Ko, Y., “Crystallinity of Al2O3 films deposited by metalorganic chemical vapor deposition.” Surface and Coatings Technology,176, 2004, 382-384.
[9]Koh, W.; Ku, S.-J.; Kim, Y., “Chemical vapor deposition of Al2O3 films using highly volatile single sources.” Thin Solid Films,304, 1997, 222-224.
[10]Al-Robaee, M. S.; Subbanna, G.; Narasimha Rao, K.; Mohan, S., “Studies of the optical and structural properties of ion-assisted deposited Al2O3 thin films.” Vacuum,45, 1994, 97-102.
[11]Frach, P.; Heisig, U.; Gottfried, C.; Walde, H., “Aspects and results of long-term stable deposition of Al2O3 with high rate pulsed reactive magnetron sputtering.” Surface and Coatings Technology,59, 1993, 177-182.
[12]Aguilar-Frutis, M.; Garcia, M.; Falcony, C.; Plesch, G.; Jimenez-Sandoval, S., “A study of the dielectric characteristics of aluminum oxide thin films deposited by spray pyrolysis from Al(acac)3.” Thin Solid Films,389, 2001, 200-206.
[13]Özer, N.; Cronin, J. P.; Yao, Y.-J.; Tomsia, A. P., “Optical properties of sol–gel deposited Al2O3 films.” Solar Energy Materials and Solar Cells,59, 1999, 355-366.
[14]“Synthesis and structure of tris (acetylacetonato)-aluminum (III).” Indian journal of chemistry. Section A, Inorganic, bio-inorganic, physical, theoretical & analytical chemistry,49, 2010, 1607.
[15]Diebold, U., “The surface science of titanium dioxide.” Surface Science Reports,48, 2003, 53-229.
[16]Hanaor, D.; Sorrell, C., “Review of the anatase to rutile phase transformation.” Journal of Materials Science,46, 2011, 855-874.
[17]Lee, S.-H.; Kang, M.; Cho, S. M.; Han, G. Y.; Kim, B.-W.; Yoon, K. J.; Chung, C.-H., “Synthesis of TiO2 photocatalyst thin film by solvothermal method with a small amount of water and its photocatalytic performance.” Journal of Photochemistry and Photobiology A: Chemistry,146, 2001, 121-128.
[18]Byun, D.; Jin, Y.; Kim, B.; Kee Lee, J.; Park, D., “Photocatalytic TiO2 deposition by chemical vapor deposition.” Journal of Hazardous Materials,73, 2000, 199-206.
[19]Leistner, T.; Lehmbacher, K.; Härter, P.; Schmidt, C.; Bauer, A. J.; Frey, L.; Ryssel, H., “MOCVD of titanium dioxide on the basis of new precursors.” Journal of Non-Crystalline Solids,303, 2002, 64-68.
[20]Balasubramanian, K.; Han, X.; Guenther, K. H., “Comparative study of titanium dioxide thin films produced by electron-beam evaporation and by reactive low-voltage ion plating.” Applied optics,32, 1993, 5594-5600.
[21]Dannenberg, R.; Greene, P., “Reactive sputter deposition of titanium dioxide.” Thin Solid Films,360, 2000, 122-127.
[22]Zheng, S.; Wang, T.; Xiang, G.; Wang, C., “Photocatalytic activity of nanostructured TiO2 thin films prepared by dc magnetron sputtering method.” Vacuum,62, 2001, 361-366.
[23]Dixon, B. G.; Walsh, M. A.; Phillips, P. G.; Morris, R. S., “Generation of amorphous ceramic capacitor coatings on titanium using a continuous sol-gel process.” Journal of materials research,10, 1995, 2626-2630.
[24]DeSisto, W. J.; Qian, Y. T.; Hannigan, C.; Edwards, J. O.; Kershaw, R.; Dwight, K.; Wold, A., “Preparation and characterization of alumina films prepared by a novel spray pyrolysis method.” Materials Research Bulletin,25, 1990, 183-189.
[25]Kuo, D.-H.; Shueh, C.-N., “Properties of CVD alumina–titania composite films grown at different CO2/H2 inputs.” Journal of Non-Crystalline Solids,336, 2004, 120-127.
[26]Kuo, D.-H.; Shueh, C.-N., “Properties of aluminum titanate films prepared by chemical vapor deposition under different aluminum butoxide inputs.” Thin Solid Films,478, 2005, 109-115.
[27]Vermarien, E.; Agostinelli, G.; Beaucarne, G.; Poortmans, J.,“ Progress on the Pseudo-Binary (Al2O3)3(TiO2)2-System for Surface Passivation of P-Type Silicon“, Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, Hawaii,USA, 2006,103-106.
[28]Vitanov, P.; Agostinelli, G.; Harizanova, A.; Ivanova, T.; Vukadinovic, M.; Le Quang, N.; Beaucarne, G., “Low cost surface passivation for p-type mc-Si based on pseudobinary alloys (Al2O3)x(TiO2)1−x.” Solar Energy Materials and Solar Cells,90, 2006, 2489-2495.
[29]Vitanov, P.; Harizanova, A.; Ivanova, T.; Alexieva, Z.; Ivanova, K.; Agostinelli, G., “Application of Pseudobinary Alloys (Al2O3) x (TiO2)1− x as High‐k Dielectrics on Silicon.” Plasma Processes and Polymers,3, 2006, 184-187.
[30]http://www.crct.polymtl.ca/FACT/documentation/.
[31]Nakaruk, A.; Sorrell, C., “Conceptual model for spray pyrolysis mechanism: fabrication and annealing of titania thin films.” Journal of Coatings Technology and Research,7, 2010, 665-676.
[32]http://www.sono-tek.com/.
[33]Aberle, A. G., “Surface passivation of crystalline silicon solar cells: a review.” Progress in Photovoltaics: Research and Applications,8, 2000, 473-487.
[34]Oja Açik, I.; Madarász, J.; Krunks, M.; Tõnsuaadu, K.; Janke, D.; Pokol, G.; Niinistö, L., “Thermoanalytical studies of titanium(IV) acetylacetonate xerogels with emphasis on evolved gas analysis.” Journal of Thermal Analysis and Calorimetry,88, 2007, 557-563.
[35]Keevers, M. J.; Green, M. A., “Absorption edge of silicon from solar cell spectral response measurements.” Applied Physics Letters,66, 1995, 174-176.