簡易檢索 / 詳目顯示

研究生: 陳又菁
Chen, Yu-Ching
論文名稱: 穿膜性抗菌胜肽KL15對抑制大腸癌細胞株增生之探討
Anti-proliferative effect on acolon adenocarcinoma cell line exerted by amembrane disrupting antimicrobial peptide KL15
指導教授: 林志侯
Lin, Thy-Hou
口試委員: 張晃猷
高茂傑
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2014
畢業學年度: 103
語文別: 英文
論文頁數: 73
中文關鍵詞: 抗癌之抗菌胜肽穿膜,擾膜小胜肽(蛋白)藥胜肽KL15掃描式電子顯微鏡共軛焦顯微鏡
外文關鍵詞: anticancer antimicrobial peptide (AMP), membrane disruption, small peptide (protein) drug, peptide KL15, SEM, confocal microscope
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,抗菌胜肽相關的研究逐漸受到重視,除了其抗菌能力外,在癌症治療上也相當的有潛力。過去幾年來,本實驗室從乳酸桿菌Lactobacillus casei ATCC 334中篩選出數個具抗癌潛力之抗菌胜肽包含m2163及m2386。本篇論文中,有兩個研究方向同時進行。一方面,為了設計出更強的具抗癌潛力之抗菌胜肽,我們根據文獻中整理出的原則修改m2163及m2386,並做初步測試。另一方面,我們把重點放在一個稍早從m2163修改而來的短胜肽穿膜蛋白KL15之定性及細胞增生研究。
    KL15是個具抗癌活性之抗菌胜肽。在細胞毒性測試中,以KL15投藥後,兩個癌細胞株- SW480及Caco-2 (人類大腸癌細胞株)相較於非癌細胞株- H184B5F5/M10 (人類乳腺表皮細胞株)存活率下降得更明顯;前者之IC50約在50 μg/ml (26.3 μM),而後者則是在150 μg/ml。以KL15對SW480細胞投藥之後,以DNA、細胞型態及膜通透性、可能的細胞死亡路徑,三個層面觀察細胞的改變。並且,結合共軛焦顯微鏡的觀察,我們得知隨著投藥時間增加,KL15會因膜通透性增加而穿膜進入細胞。整體的結果意味著KL15造成的細胞膜受損,在細胞死亡中扮演重要的角色,而細胞死亡的路徑可能與細胞壞死有關。然而,其中的死亡機制仍尚未釐清,有待日後研究。


    Recent research has paid increasing attention to antimicrobial peptides (AMPs), not only for their antimicrobial activity, but also for their potential of therapeutic application in cancer therapy. In the past few years, our lab has found several novel bacteriocins including m2163 and m2386 with anticancer potential from Lactobacillus casei ATCC 334. In this thesis, two directions of research were simultaneously processed. On one hand, to design stronger anticancer peptides, several modifications of both m2163 and m2386 were made following the principle, and went through preliminary tests. On the other hand, we focused on characterization and the anti-proliferative study of the membrane disrupting peptide KL15, a short peptide which was earlier modified from m2163.
    KL15 is an AMP with anticancer activity. In the cytotoxicity assay, both cancerous- human colon adenocarcinoma cell lines, SW480 and Caco-2, showed a more obvious decrease on survival rate than non-cancerous- human mammary epithelial cell line, H184B5F5/M10; IC50 of SW480 and Caco-2 are around 50 μg/ml (26.3 μM), while IC50 of H184B5F5 is at 150 μg/ml. SW480 cell changes after treated with KL15 were observed in three aspects- DNA, membrane permeability and morphology, and possible cell death pathway. Also, combined with confocal microscope, we knew that KL15 would enter the cell as membrane permeability increase in the later stage. The overall results implied that the cell membrane disruption causing by KL15 played a crucial role in cell death, moreover, the concerning cell death pathway may be necrosis. However, the underlying mechanism is not yet clear, and is still under investigation.

    Acknowledgement…………………………………………………………………………………………………………………I Chinese Abstract…………………………………………………………………………………………………………………..II English Abstract……………………………………………………………………………………………………………………III 1. Introduction…………………………………………………………………………………………………………………..1 2. Materials and Methods………………………………………………………………………………………………....8 3. Results………………………………………………………………………………………………………………………….23 3.1. In silico analysis of peptide modification. .……………………………………………………………..23 3.2. Analysis of modified peptides. ………………………………………………………………………………23 3.3. Peptide KL15 Activity Assay. …………………………………………………………………………………25 3.4. Observing cell changes of treated SW480 cells in the aspect of DNA. ……………..……26 3.5. Observing cell changes of treated SW480 cells in the aspect of membrane permeabilityand morphology. …………………………..…………………………………………………..27 3.6. Observing cell changes of treated SW480 cells in the aspect of possible cell death pathway. ……………………………………………………………………………….……………………………….28 3.7. Peptide-cell co-localization using confocal microscope. ……….…………………………..….29 4. Discussion……………………………………………………………………………………………………………………30 4.1. KL15 is an AMP with anticancer activity. ………………………………………………………………30 4.2. Possible pathway of KL15 triggering cell death. ……………………………………………………30 4.3. The membrane disruption causing by KL15 plays a crucial role in cell death. ……….31 4.4. Peptide KL15-cell co-localization. …………………………………………………………………………32 4.5. The prospect of peptide modification. …………………………………………………………………32 4.6. The significance of this research.…………………………………………………………………………34 5. Tables and Figures………………………….………………………………………………………………….....……36 6. Appendix………………………….……………………………………………………………………….……….……….58 7. References.…………………….………………………………………………………………………….…….……….65

    1. Paul D. Cotter1, C.H.R.P.R., Food microbiology: Bacteriocins: developing innate immunity for food. Nature Reviews Microbiology, 2005. 3: p. 777-788.
    2. Sand, S.L., et al., Plantaricin A, a peptide pheromone produced by Lactobacillus plantarum, permeabilizes the cell membrane of both normal and cancerous lymphocytes and neuronal cells. Peptides, 2010. 31(7): p. 1237-44.
    3. Nissen-Meyer, J., et al., Structure-function relationships of the non-lanthionine-containing peptide (class II) bacteriocins produced by gram-positive bacteria. Curr Pharm Biotechnol, 2009. 10(1): p. 19-37.
    4. Klaenhammer, T.R., Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev, 1993. 12(1-3): p. 39-85.
    5. Havarstein, L., Diep, DB, Nes, IF, A family of bacteriocin ABC transporters carry out proteolytic processing of their substrates concomitant with export. . Mol Microbiol, 1995. 16: p. 229-240.
    6. Cotter, P.D., C. Hill, and R.P. Ross, Bacteriocins: developing innate immunity for food. Nat Rev Microbiol, 2005. 3(10): p. 777-88.
    7. Kuo, Y.C., et al., Characterization of putative class II bacteriocins identified from a non-bacteriocin-producing strain Lactobacillus casei ATCC 334. Appl Microbiol Biotechnol, 2013. 97(1): p. 237-46.
    8. Garneau, S., N.I. Martin, and J.C. Vederas, Two-peptide bacteriocins produced by lactic acid bacteria. Biochimie, 2002. 84(5-6): p. 577-92.
    9. Holo, H., O. Nilssen, and I.F. Nes, Lactococcin A, a new bacteriocin from Lactococcus lactis subsp. cremoris: isolation and characterization of the protein and its gene. J Bacteriol, 1991. 173(12): p. 3879-87.
    10. Netz, D.J., et al., Biochemical characterisation and genetic analysis of aureocin A53, a new, atypical bacteriocin from Staphylococcus aureus. J Mol Biol, 2002. 319(3): p. 745-56.
    11. De Vuyst, L. and F. Leroy, Bacteriocins from lactic acid bacteria: production, purification, and food applications. J Mol Microbiol Biotechnol, 2007. 13(4): p. 194-9.
    12. Gordon Cooke, J.B.a.M.C., Newly identified vitamin K-producing bacteria isolated from the neonatal faecal flora. Microbial Ecology in Health and Disease, 2006. 18 (3-4): p. 133-138.
    13. Strozzi, G.P. and L. Mogna, Quantification of folic acid in human feces after administration of Bifidobacterium probiotic strains. J Clin Gastroenterol, 2008. 42 Suppl 3 Pt 2: p. S179-84.
    14. Molina VC, M.M., Taranto MP, Font de Valdez G, Lactobacillus reuteriCRL 1098 prevents side effects produced by a nutritional vitamin B12deficiency. Journal of Applied Microbiology, 2009. 106(2): p. 467-473.
    15. Gibson, G.R., Saveedra, J.M., MacFarlane, S., MacFarlane, G.T., Probiotics and Intestinal Infections. Probiotics 2: Applications and Practical Aspects, 1997: p. 10-39.
    16. Reid, G., et al., Potential uses of probiotics in clinical practice. Clin Microbiol Rev, 2003. 16(4): p. 658-72.
    17. Mann, G.V., Studies of a surfactant and cholesteremia in the Maasai. Am J Clin Nutr, 1974. 27(5): p. 464-9.
    18. Sanders, M.E., Considerations for use of probiotic bacteria to modulate human health. J Nutr, 2000. 130(2S Suppl): p. 384S-390S.
    19. Wollowski, I., G. Rechkemmer, and B.L. Pool-Zobel, Protective role of probiotics and prebiotics in colon cancer. Am J Clin Nutr, 2001. 73(2 Suppl): p. 451S-455S.
    20. Kirjavainen, P.V., S.J. Salminen, and E. Isolauri, Probiotic bacteria in the management of atopic disease: underscoring the importance of viability. J Pediatr Gastroenterol Nutr, 2003. 36(2): p. 223-7.
    21. Dinan, T.G., C. Stanton, and J.F. Cryan, Psychobiotics: a novel class of psychotropic. Biol Psychiatry, 2013. 74(10): p. 720-6.
    22. Burnet, P.W. and P.J. Cowen, Psychobiotics highlight the pathways to happiness. Biol Psychiatry, 2013. 74(10): p. 708-9.
    23. Rebecca L. Alfred*, N.M.S., Enzo A. Palombo and Mrinal Bhave, Tryptophan-rich antimicrobial peptides: properties and applications. Microbial pathogens and strategies for combating them: science, technology and education (A. Méndez-Vilas, Ed.), 2013.
    24. Mader, J.S. and D.W. Hoskin, Cationic antimicrobial peptides as novel cytotoxic agents for cancer treatment. Expert Opin Investig Drugs, 2006. 15(8): p. 933-46.
    25. Mohsen Shadidi, M.S., Selective targeting of cancer cells using synthetic peptides. Drug Resistance Updates, 2003. 6(6): p. 363-371.
    26. Joo, N.E., et al., Nisin, an apoptogenic bacteriocin and food preservative, attenuates HNSCC tumorigenesis via CHAC1. Cancer Med, 2012. 1(3): p. 295-305.
    27. Abdi-Ali, A., et al., Cytotoxic effects of pyocin S2 produced by Pseudomonas aeruginosa on the growth of three human cell lines. Can J Microbiol, 2004. 50(5): p. 375-81.
    28. Cichon, T., et al., D-K6L 9 peptide combination with IL-12 inhibits the recurrence of tumors in mice. Arch Immunol Ther Exp (Warsz), 2014. 62(4): p. 341-51.
    29. Leuschner, C. and W. Hansel, Membrane disrupting lytic peptides for cancer treatments. Curr Pharm Des, 2004. 10(19): p. 2299-310.
    30. Zeitler, B., et al., De-novo design of antimicrobial peptides for plant protection. PLoS One, 2013. 8(8): p. e71687.
    31. Hammami, R., et al., BACTIBASE second release: a database and tool platform for bacteriocin characterization. BMC Microbiol, 2010. 10: p. 22.
    32. Gautier, R., et al., HELIQUEST: a web server to screen sequences with specific alpha-helical properties. Bioinformatics, 2008. 24(18): p. 2101-2.
    33. Artimo, P., et al., ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res, 2012. 40(Web Server issue): p. W597-603.
    34. Eisenhaber, F., C. Frommel, and P. Argos, Prediction of secondary structural content of proteins from their amino acid composition alone. II. The paradox with secondary structural class. Proteins, 1996. 25(2): p. 169-79.
    35. Chen, C.C., J.K. Hwang, and J.M. Yang, (PS)2-v2: template-based protein structure prediction server. BMC Bioinformatics, 2009. 10: p. 366.
    36. Klaenhammer, T.R., Bacteriocins of lactic acid bacteria. Biochimie, 1988. 70(3): p. 337-49.
    37. GmbH, B., Apoptosis Detection (Phosphatidylserin/Annexin based).
    38. Lin, V.C., et al., Progesterone induces cellular differentiation in MDA-MB-231 breast cancer cells transfected with progesterone receptor complementary DNA. Am J Pathol, 2003. 162(6): p. 1781-7.
    39. Hauge, H.H., et al., Plantaricin A is an amphiphilic alpha-helical bacteriocin-like pheromone which exerts antimicrobial and pheromone activities through different mechanisms. Biochemistry, 1998. 37(46): p. 16026-32.
    40. Vermeer, L.S., et al., Conformational flexibility determines selectivity and antibacterial, antiplasmodial, and anticancer potency of cationic alpha-helical peptides. J Biol Chem, 2012. 287(41): p. 34120-33.
    41. Ye, J.S., et al., Induction of transient ion channel-like pores in a cancer cell by antibiotic peptide. J Biochem, 2004. 136(2): p. 255-9.
    42. Rosenberg, A., The optical rotatory dispersion of aromatic amino acids and the side chain-dependent Cotton effects in proteins. J Biol Chem, 1966. 241(21): p. 5119-25.
    43. Papo, N., et al., Suppression of human prostate tumor growth in mice by a cytolytic D-, L-amino Acid Peptide: membrane lysis, increased necrosis, and inhibition of prostate-specific antigen secretion. Cancer Res, 2004. 64(16): p. 5779-86.
    44. Chan, S.C., et al., Microscopic observations of the different morphological changes caused by anti-bacterial peptides on Klebsiella pneumoniae and HL-60 leukemia cells. J Pept Sci, 1998. 4(7): p. 413-25.
    45. Vanden Berghe, T., et al., Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol, 2014. 15(2): p. 135-47.
    46. Lehmann, J., et al., Antitumor activity of the antimicrobial peptide magainin II against bladder cancer cell lines. Eur Urol, 2006. 50(1): p. 141-7.
    47. Zhang, Y., et al., Functional properties of a novel hybrid antimicrobial peptide NS: potent antitumor activity and efficient plasmid delivery. J Pept Sci, 2014. 20(10): p. 785-93.
    48. Hsiao, Y.C., et al., Anticancer activities of an antimicrobial peptide derivative of Ixosin-B amide. Bioorg Med Chem Lett, 2013. 23(20): p. 5744-7.
    49. Chen, Y.Q., et al., A cationic amphiphilic peptide ABP-CM4 exhibits selective cytotoxicity against leukemia cells. Peptides, 2010. 31(8): p. 1504-10.
    50. Huang, W., et al., Anti-melanoma activity of hybrid peptide P18 and its mechanism of action. Biotechnol Lett, 2010. 32(4): p. 463-9.
    51. Hancock, R.E. and A. Rozek, Role of membranes in the activities of antimicrobial cationic peptides. FEMS Microbiol Lett, 2002. 206(2): p. 143-9.
    52. Wang, G., X. Li, and Z. Wang, APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acids Res, 2009. 37(Database issue): p. D933-7.
    53. Dathe, M. and T. Wieprecht, Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells. Biochim Biophys Acta, 1999. 1462(1-2): p. 71-87.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE