研究生: |
謝佳筑 Hsieh, Chia-Chu |
---|---|
論文名稱: |
葡聚醣氧化鐵奈米粒子及Interferon-induced protein 44-like (IFI44L)基因對間質幹細胞調控癌症治療之研究 The impacts of dextran-coated iron-oxide nanoparticles and Interferon-induced protein 44-like (IFI44L) on mesenchymal stem cells-mediated cancer therapy |
指導教授: |
黃東明
Huang, Dong-Ming 陳令儀 Chen, Linyi |
口試委員: |
黃聰龍
Hwang, Tsong-Long 王士維 Wang, Shin-Wei 蕭仲凱 Hsiao, Jong-Kai |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 91 |
中文關鍵詞: | 癌症治療 、間質幹細胞 、葡聚醣氧化鐵奈米粒子 、細胞治療 、IFI44L |
外文關鍵詞: | cancer therapy, mesenchymal stem cells, dextran-coated iron oxide nanoparticles, cell therapy, IFI44L |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前很多研究利用間質幹細胞具有腫瘤趨向性,作為裝載抗癌藥物的細胞載體以治療癌症。然而,間質幹細胞在腫瘤發展的影響卻具有很多爭議性,並可能因此阻礙間質幹細胞臨床癌症治療的發展。為了確保此細胞治療的安全性,必須了解抗癌間質幹細胞與促癌間質幹細胞在癌症發展過程中之間的差異性。
首先,我們發現葡聚醣包覆的氧化鐵奈米粒子(簡稱為葡聚醣氧化鐵奈米粒子)不但可以強化抗癌間質幹細胞的抗癌效果,而且可以逆轉促癌間質幹細胞促進癌症的影響,這表示葡聚醣氧化鐵奈米粒子可以在活體內將促癌間質幹細胞轉化成為抗癌間質幹細胞。在體外的細胞實驗結果發現:此奈米粒子(1)可以抑制癌症細胞群落的形成、(2)促進間質幹細胞表面的激素受體表現以與癌細胞競爭結合更多癌細胞分泌的細胞激素、(3)可以抑制促癌間質幹細胞分化成癌症相關的纖維母細胞及內皮細胞,也(4)能抑制促癌間質幹細胞對宿主內生性前驅細胞分化成癌症相關的纖維母細胞及內皮細胞的能力。
進一步根據微陣列篩查結果,相較於促癌間質幹細胞,我們發現Interferon-induced protein 44-like (IFI44L)在抗癌間質細胞會大量表現;而且在葡聚醣氧化鐵奈米粒子轉化的促癌間質幹細胞(已轉變成抗癌間質幹細胞,又稱後天的抗癌間質幹細胞),IFI44L的表現量明顯的被誘導。在活體動物實驗中,利用小分子核糖核酸干擾的技術降低抗癌間質幹細胞IFI44L的基因表現,即能降低抗癌間質幹細胞的抗癌效果;相反的,在促癌間質幹細胞大量表現IFI44L,促癌間質幹細胞則會轉變成抗癌間質幹細胞,抑制癌症的生長。在細胞實驗結果中,我們發現間質幹細胞可分泌IFI44L至細胞外。在促癌間質幹細胞大量表現分泌的IFI44L,可抑制內皮前驅細胞的管柱形成的能力;反之,在抗癌間質幹細胞抑制IFI44L的表現分泌,則會促進內皮前驅細胞的管柱形成的能力。根據這些功能增加及功能喪失的實驗結果,我們認為間質幹細胞分泌的IFI44L具調控血管新生的影響。另一方面,在內皮前驅細胞大量表現IFI44L,亦可直接抑制其管柱形成;相反的,在內皮前驅細胞抑制IFI44L的表現,會增加管柱形成的現象。這表示IFI44L可能直接影響內皮前驅細胞的血管新生的功能。整體而言,我們證實IFI44L 不只是在間質幹細胞的抗癌能力扮演重要的角色,IFI44L可作為細胞標記來決定間質幹細胞究竟是癌症細胞的朋友(促癌間質幹細胞)或是敵人(抗癌間質幹細胞)。
Mesenchymal stem cells or multipotent mesenchymal stromal cells (MSCs) with the tumor tropism have shown promise as a cellular deliverer of anticancer agents for cancer therapy. However, the conflicting outcomes in the studies of MSCs on tumor progression may impede the clinical application of MSC-based cancer therapy. In order to ensure pertinent MSC-based cancer therapy, it is essential to further distinguish the molecular foundations for the discrepancies of the impacts on tumor progression between antitumor MSCs (aT-MSCs) and protumor MSCs (pT-MSCs).
First, we show that dextran-coated iron oxide nanoparticles (dex-IO NPs) can not only increase the antitumor effect of native aT-MSCs but also reverse the protumor effect of native pT-MSCs and hence dex-IO NPs turn pT-MSCs into aT-MSCs in vivo. The in vitro finding that dex-IO NPs (1) can inhibit the colony formation of cancer cells, (2) induce cytokine receptor expression to competitively capture the tumorous cytokine, (3) impair pT-MSCs to differentiate to cancer-mediated fibroblast cells and endothelial-like cells and (4) inhibit pT-MSCs to promote the intrinsic tumor-associated precursors differentiate to fibroblasts and endothelial-like cells.
Furthermore, microarray screen analysis revealed that interferon-induced protein 44-like (IFI44L) was highly expressed in innate aT-MSCs and markedly induced in acquired aT-MSCs from dex-IO NP-transformed pT-MSCs, compared with innate pT-MSCs. IFI44L loss of function in aT-MSCs attenuated their antitumor effects; conversely, the transduction of IFI44L in pT-MSCs blocked their protumor effects in vivo. In vitro, we showed that overexpressed IFI44L in pT-MSCs could be secreted into media to attenuate the tube formation of human endothelial progenitor cells. In contrast, silence of IFI44L in aT-MSCs would result in the decrease of IFI44L in aT-MSCs-derived media. The tube formation of human endothelial progenitor cells in the media from IFI44L-silenced aT-MSCs-derived media would be enhanced than the media from aT-MSCs-derived media. Overall, the gain- and loss-of-function experiments confirmed the secreted IFI44L in MSCs-derived media can mediate the angiogenesis. On the other hand, silencing IFI44L in human endothelial progenitor cells significantly promoted their tube formation ability and overexpression of IFI44L in human endothelial progenitor cells significantly reduced their tube formation ability, suggesting IFI44L may directly affect the angiogenesis in human endothelial progenitor cells. Our results not only identified a central role for IFI44L in antitumor effects of MSCs but also suggested that IFI44L could be a marker for determining MSCs to be friends (protumor MSCs) or enemies (antitumor MSCs) of cancer cells.
1. Friedenstein, A.J., Piatetzky, S., II & Petrakova, K.V. Osteogenesis in transplants of bone marrow cells. J. Embryol. Exp. Morphol. 16, 381-390 (1966).
2. Nombela-Arrieta, C., Ritz, J. & Silberstein, L.E. The elusive nature and function of mesenchymal stem cells. Nat. Rev. Mol. Cell Biol. 12, 126-131 (2011).
3. Dominici, M. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8, 315-317 (2006).
4. Shi, Y., Du, L., Lin, L. & Wang, Y. Tumour-associated mesenchymal stem/stromal cells: emerging therapeutic targets. Nat Rev Drug Discov 16, 35-52 (2017).
5. Dawson, M.R., Chae, S.S., Jain, R.K. & Duda, D.G. Direct evidence for lineage-dependent effects of bone marrow stromal cells on tumor progression. Am. J. Cancer Res. 1, 144-154 (2011).
6. Beckermann, B.M. et al. VEGF expression by mesenchymal stem cells contributes to angiogenesis in pancreatic carcinoma. Br. J. Cancer 99, 622-631 (2008).
7. Li, Y. et al. Insulin-like growth factor 1 enhances the migratory capacity of mesenchymal stem cells. Biochem. Biophys. Res. Commun. 356, 780-784 (2007).
8. Hata, N. et al. Platelet-derived growth factor BB mediates the tropism of human mesenchymal stem cells for malignant gliomas. Neurosurgery 66, 144-156; discussion 156-147 (2010).
9. Birnbaum, T. et al. Malignant gliomas actively recruit bone marrow stromal cells by secreting angiogenic cytokines. J. Neurooncol. 83, 241-247 (2007).
10. Menon, L.G. et al. Differential gene expression associated with migration of mesenchymal stem cells to conditioned medium from tumor cells or bone marrow cells. Stem Cells 25, 520-528 (2007).
11. Liu, S. et al. Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res. 71, 614-624 (2011).
12. Ries, C. et al. MMP-2, MT1-MMP, and TIMP-2 are essential for the invasive capacity of human mesenchymal stem cells: differential regulation by inflammatory cytokines. Blood 109, 4055-4063 (2007).
13. Tsai, K.S. et al. Mesenchymal stem cells promote formation of colorectal tumors in mice. Gastroenterology 141, 1046-1056 (2011).
14. Zhang, T. et al. Bone marrow-derived mesenchymal stem cells promote growth and angiogenesis of breast and prostate tumors. Stem Cell. Res. Ther. 4, 70 (2013).
15. Nwabo Kamdje, A.H. et al. Mesenchymal stromal cells' role in tumor microenvironment: involvement of signaling pathways. Cancer Biol Med 14, 129-141 (2017).
16. Spaeth, E.L. et al. Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PloS one 4, e4992 (2009).
17. Ho, I.A. et al. Human bone marrow-derived mesenchymal stem cells suppress human glioma growth through inhibition of angiogenesis. Stem Cells 31, 146-155 (2013).
18. Lee, R.H., Yoon, N., Reneau, J.C. & Prockop, D.J. Preactivation of human MSCs with TNF-alpha enhances tumor-suppressive activity. Cell Stem Cell 11, 825-835 (2012).
19. Ramdasi, S., Sarang, S. & Viswanathan, C. Potential of Mesenchymal Stem Cell based application in Cancer. Int J Hematol Oncol Stem Cell Res 9, 95-103 (2015).
20. Dai, L.J. et al. Potential implications of mesenchymal stem cells in cancer therapy. Cancer letters 305, 8-20 (2011).
21. Klopp, A.H., Gupta, A., Spaeth, E., Andreeff, M. & Marini, F., 3rd Concise review: Dissecting a discrepancy in the literature: do mesenchymal stem cells support or suppress tumor growth? Stem Cells 29, 11-19 (2011).
22. Khakoo, A.Y. et al. Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi's sarcoma. J. Exp. Med. 203, 1235-1247 (2006).
23. Kidd, S. et al. Mesenchymal stromal cells alone or expressing interferon-beta suppress pancreatic tumors in vivo, an effect countered by anti-inflammatory treatment. Cytotherapy 12, 615-625 (2010).
24. Kidd, S. et al. Direct evidence of mesenchymal stem cell tropism for tumor and wounding microenvironments using in vivo bioluminescent imaging. Stem Cells 27, 2614-2623 (2009).
25. Sasportas, L.S. et al. Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. Proc. Natl. Acad. Sci. U. S. A. 106, 4822-4827 (2009).
26. Son, B.R. et al. Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases. Stem Cells 24, 1254-1264 (2006).
27. Schmidt, N.O. et al. Brain tumor tropism of transplanted human neural stem cells is induced by vascular endothelial growth factor. Neoplasia 7, 623-629 (2005).
28. Sato, H. et al. Epidermal growth factor receptor-transfected bone marrow stromal cells exhibit enhanced migratory response and therapeutic potential against murine brain tumors. Cancer Gene Ther. 12, 757-768 (2005).
29. Viola, A., Sarukhan, A., Bronte, V. & Molon, B. The pros and cons of chemokines in tumor immunology. Trends Immunol. 33, 496-504 (2012).
30. Singh, S., Srivastava, S.K., Bhardwaj, A., Owen, L.B. & Singh, A.P. CXCL12-CXCR4 signalling axis confers gemcitabine resistance to pancreatic cancer cells: a novel target for therapy. Br. J. Cancer 103, 1671-1679 (2010).
31. Nicholson, R.I., Gee, J.M. & Harper, M.E. EGFR and cancer prognosis. Eur. J. Cancer 37 Suppl 4, S9-15 (2001).
32. Sage, E.K., Thakrar, R.M. & Janes, S.M. Genetically modified mesenchymal stromal cells in cancer therapy. Cytotherapy 18, 1435-1445 (2016).
33. Yu, X. et al. Overexpression of CXCR4 in mesenchymal stem cells promotes migration, neuroprotection and angiogenesis in a rat model of stroke. J. Neurol. Sci. 316, 141-149 (2012).
34. Kumar, S. & Ponnazhagan, S. Bone homing of mesenchymal stem cells by ectopic alpha 4 integrin expression. FASEB J. 21, 3917-3927 (2007).
35. Annabi, B. et al. Hypoxia promotes murine bone-marrow-derived stromal cell migration and tube formation. Stem Cells 21, 337-347 (2003).
36. Lin, Y.T. et al. Human mesenchymal stem cells prolong survival and ameliorate motor deficit through trophic support in Huntington's disease mouse models. PloS one 6, e22924 (2011).
37. Loebinger, M.R., Eddaoudi, A., Davies, D. & Janes, S.M. Mesenchymal stem cell delivery of TRAIL can eliminate metastatic cancer. Cancer Res. 69, 4134-4142 (2009).
38. Sage, E.K. et al. Systemic but not topical TRAIL-expressing mesenchymal stem cells reduce tumour growth in malignant mesothelioma. Thorax 69, 638-647 (2014).
39. Lathrop, M.J. et al. Antitumor effects of TRAIL-expressing mesenchymal stromal cells in a mouse xenograft model of human mesothelioma. Cancer Gene Ther. 22, 44-54 (2015).
40. Studeny, M. et al. Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res. 62, 3603-3608 (2002).
41. Studeny, M. et al. Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J. Natl. Cancer Inst. 96, 1593-1603 (2004).
42. Ren, C. et al. Cancer gene therapy using mesenchymal stem cells expressing interferon-beta in a mouse prostate cancer lung metastasis model. Gene Ther. 15, 1446-1453 (2008).
43. Chen, X.C. et al. Prophylaxis against carcinogenesis in three kinds of unestablished tumor models via IL12-gene-engineered MSCs. Carcinogenesis 27, 2434-2441 (2006).
44. Chen, X. et al. A tumor-selective biotherapy with prolonged impact on established metastases based on cytokine gene-engineered MSCs. Mol. Ther. 16, 749-756 (2008).
45. Li, X. et al. In vitro effect of adenovirus-mediated human Gamma Interferon gene transfer into human mesenchymal stem cells for chronic myelogenous leukemia. Hematol. Oncol. 24, 151-158 (2006).
46. Mei, S.H. et al. Prevention of LPS-induced acute lung injury in mice by mesenchymal stem cells overexpressing angiopoietin 1. PLoS Med. 4, e269 (2007).
47. Kanki-Horimoto, S. et al. Implantation of mesenchymal stem cells overexpressing endothelial nitric oxide synthase improves right ventricular impairments caused by pulmonary hypertension. Circulation 114, I181-185 (2006).
48. Matsumoto, R. et al. Vascular endothelial growth factor-expressing mesenchymal stem cell transplantation for the treatment of acute myocardial infarction. Arterioscler. Thromb. Vasc. Biol. 25, 1168-1173 (2005).
49. Altanerova, V. et al. Human adipose tissue-derived mesenchymal stem cells expressing yeast cytosinedeaminase::uracil phosphoribosyltransferase inhibit intracerebral rat glioblastoma. Int. J. Cancer 130, 2455-2463 (2012).
50. Alieva, M. et al. Glioblastoma therapy with cytotoxic mesenchymal stromal cells optimized by bioluminescence imaging of tumor and therapeutic cell response. PloS one 7, e35148 (2012).
51. Ashkenazi, A. et al. Safety and antitumor activity of recombinant soluble Apo2 ligand. J. Clin. Invest. 104, 155-162 (1999).
52. Kostura, L., Kraitchman, D.L., Mackay, A.M., Pittenger, M.F. & Bulte, J.W. Feridex labeling of mesenchymal stem cells inhibits chondrogenesis but not adipogenesis or osteogenesis. NMR Biomed. 17, 513-517 (2004).
53. Arbab, A.S. et al. Labeling of cells with ferumoxides-protamine sulfate complexes does not inhibit function or differentiation capacity of hematopoietic or mesenchymal stem cells. NMR Biomed. 18, 553-559 (2005).
54. Chen, Y.C. et al. The inhibitory effect of superparamagnetic iron oxide nanoparticle (Ferucarbotran) on osteogenic differentiation and its signaling mechanism in human mesenchymal stem cells. Toxicol. Appl. Pharmacol. 245, 272-279 (2010).
55. Chien, L.Y. et al. In vivo magnetic resonance imaging of cell tropism, trafficking mechanism, and therapeutic impact of human mesenchymal stem cells in a murine glioma model. Biomaterials 32, 3275-3284 (2011).
56. Chung, T.H. et al. Iron oxide nanoparticle-induced epidermal growth factor receptor expression in human stem cells for tumor therapy. ACS Nano 5, 9807-9816 (2011).
57. Chung, T.-H. et al. Ferucarbotran, a carboxydextran-coated superparamagnetic iron oxide nanoparticle, induces endosomal recycling, contributing to cellular and exosomal EGFR overexpression for cancer therapy. RSC Advances 5, 89932-89939 (2015).
58. Zhao, M. et al. IFI44L promoter methylation as a blood biomarker for systemic lupus erythematosus. Ann. Rheum. Dis. 75, 1998-2006 (2016).
59. Luo, S., Zhao, M. & Lu, Q. LB760 Upregulation of IFI44L induces inflammation by activating TBK1/IRF3 pathway in systemic lupus erythematosus. J. Invest. Dermatol. 136, B2 (2016).
60. Kurji, K.H. et al. Microarray analysis identifies changes in inflammatory gene expression in response to amyloid-beta stimulation of cultured human retinal pigment epithelial cells. Invest. Ophthalmol. Vis. Sci. 51, 1151-1163 (2010).
61. Chung, C.-H. et al. Butein Inhibits Angiogenesis of Human Endothelial Progenitor Cells via the Translation Dependent Signaling Pathway. Evidence-based Complementary and Alternative Medicine : eCAM 2013, 943187 (2013).
62. Su, C.-M. et al. Resistin Promotes Angiogenesis in Endothelial Progenitor Cells Through Inhibition of MicroRNA206: Potential Implications for Rheumatoid Arthritis. Stem Cells 33, 2243-2255 (2015).
63. Huang, X. et al. Design considerations of iron-based nanoclusters for noninvasive tracking of mesenchymal stem cell homing. ACS Nano 8, 4403-4414 (2014).
64. Rosenkilde, M.M. et al. Molecular mechanism of AMD3100 antagonism in the CXCR4 receptor: transfer of binding site to the CXCR3 receptor. J. Biol. Chem. 279, 3033-3041 (2004).
65. Orimo, A. et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121, 335-348 (2005).
66. Mishra, P.J. et al. Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Res. 68, 4331-4339 (2008).
67. Al-Khaldi, A. et al. Postnatal bone marrow stromal cells elicit a potent VEGF-dependent neoangiogenic response in vivo. Gene Ther. 10, 621-629 (2003).
68. Sun, B. et al. Correlation between melanoma angiogenesis and the mesenchymal stem cells and endothelial progenitor cells derived from bone marrow. Stem Cells Dev 14, 292-298 (2005).
69. Liu, J.W. et al. Characterization of endothelial-like cells derived from human mesenchymal stem cells. J. Thromb. Haemost. 5, 826-834 (2007).
70. Roorda, B.D., ter Elst, A., Kamps, W.A. & de Bont, E.S. Bone marrow-derived cells and tumor growth: contribution of bone marrow-derived cells to tumor micro-environments with special focus on mesenchymal stem cells. Crit. Rev. Oncol. Hematol. 69, 187-198 (2009).
71. Shih, S.C. et al. Molecular profiling of angiogenesis markers. Am. J. Pathol. 161, 35-41 (2002).
72. Wels, J., Kaplan, R.N., Rafii, S. & Lyden, D. Migratory neighbors and distant invaders: tumor-associated niche cells. Genes Dev. 22, 559-574 (2008).
73. Udagawa, T., Puder, M., Wood, M., Schaefer, B.C. & D'Amato, R.J. Analysis of tumor-associated stromal cells using SCID GFP transgenic mice: contribution of local and bone marrow-derived host cells. FASEB J. 20, 95-102 (2006).
74. Dong, J. et al. VEGF-null cells require PDGFR alpha signaling-mediated stromal fibroblast recruitment for tumorigenesis. EMBO J. 23, 2800-2810 (2004).
75. Jodele, S. et al. The contribution of bone marrow-derived cells to the tumor vasculature in neuroblastoma is matrix metalloproteinase-9 dependent. Cancer Res. 65, 3200-3208 (2005).
76. Chung, T.-H. et al. Dextran-coated iron oxide nanoparticles turn protumor mesenchymal stem cells (MSCs) into antitumor MSCs. RSC Advances 6, 45553-45561 (2016).
77. Peters, B.A. et al. Contribution of bone marrow-derived endothelial cells to human tumor vasculature. Nat. Med. 11, 261-262 (2005).
78. Bertolini, F., Shaked, Y., Mancuso, P. & Kerbel, R.S. The multifaceted circulating endothelial cell in cancer: towards marker and target identification. Nat. Rev. Cancer 6, 835-845 (2006).
79. Brutsch, R. et al. Integrin cytoplasmic domain-associated protein-1 attenuates sprouting angiogenesis. Circ. Res. 107, 592-601 (2010).
80. Wüstehube, J. et al. Cerebral cavernous malformation protein CCM1 inhibits sprouting angiogenesis by activating DELTA-NOTCH signaling. Proceedings of the National Academy of Sciences 107, 12640-12645 (2010).
81. Xin, F. & Radivojac, P. Post-translational modifications induce significant yet not extreme changes to protein structure. Bioinformatics 28, 2905-2913 (2012).
82. Moreno-Gonzalo, O., Villarroya-Beltri, C. & Sanchez-Madrid, F. Post-translational modifications of exosomal proteins. Front. Immunol. 5, 383 (2014).
83. Villarroya-Beltri, C. et al. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun 4, 2980 (2013).