簡易檢索 / 詳目顯示

研究生: 王少傑
Shau-Chieh Wang
論文名稱: 銀奈米顆粒於奈米碳管上不同位置的共振變化量測
Measurements of Resonance Frequency Shift Depending on the Adsorption Position of a Silver Nanoparticle on a Carbon Nanotube
指導教授: 徐統
Tung Hsu
張嘉升
Chia-Seng Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 44
中文關鍵詞: 奈米碳管共振懸臂樑
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在許多領域中,如物理、化學、以及生物科學等,測量微小物體的質量都是相當重要的。其中有一種測量方法,是利用懸臂樑的自然頻率變化。當我們在懸臂樑上放置一個物體時,由於質量的改變,會使得懸臂樑的自然共振頻率產生偏移。經由計算,可以將頻率偏移量轉換成放置物體的質量。本研究探討待測物體所放置的位置對於共振頻率的影響。此實驗使用奈米碳管做為測量用的懸臂樑,放上銀的奈米顆粒做為待測質量在超高真空穿透式電子顯微鏡上做即時量測。由實驗結果畫出銀奈米顆粒在懸臂樑上位置對共振頻率的變化曲線,並將實驗數據和古典力學推導之解析解做比較。本實驗所量測的質量精確度達到10-18 g的等級,成功的在奈米尺度下移動顆粒並量測共振頻率。


    It is very important to measure a minute mass in many fields, of physical, chemical, and biochemical sciences. One of the methods to measure minute mass is using cantilever-based resonators. The method’s basic principle is to measure the mass sensor’s resonance frequency shift and translate the measurement into the mass of the mass load. In this study, we have investigated the influence of added mass of different positions experimentally, with in situ ultra high vacuum transmission electron microscopy, and compared the experiment results with analytical expression. This experiment uses carbon nanotube as cantilevers and silver nanoparticle as added mass. The cantilever’s frequency shift with an attached silver nanoparticle is verified experimentally, and is determined as a function of the nanoparticle position. The mass sensitivity for the carbon nanotube based resonators in our experiments is less than 10-18 g.

    摘要…………………………………………………………………………………..Ⅰ 英文摘要..…………………………………………………….....…………………...Ⅱ 致謝…………………………………………………………………………………..Ⅲ 目錄………………………………………………………………………….….……Ⅳ 表目錄…………………………………………………………………………..……Ⅵ 圖目錄……………………………………………………………………………..…Ⅶ 1. 緒論……………………………………………………...……………………..…1 1.1. 前言…..…………………………………………………..……………..….1 1.2. 文獻回顧與研究動機……………………...…………..………………..…2 2. 理論與分析方法………………………………………………………………….4 2.1. 自然頻率與共振……………………………………………………………4 2.2. 自然頻率與有負載時的振動頻率計算……………………………………4 2.3. 大振幅(角度)時的討論…………………………………………………7 2.4. 銀奈米顆粒與碳管間作用力……………………………….……………...8 3. 儀器與實驗步驟………………………………………………..………….……10 3.1. 實驗設計.…………………….…..…………..……………………………10 3.2. 樣品與儀器………………………………………………………………..10 3.2.1. 穿透式電子顯微鏡………………………………………………..10 3.2.2. 金針製備…………………………………………………….……11 3.2.3. 製備刀片狀電極與放上實驗用碳管………………………….…12 3.3. 實驗步驟..…………………………………..……….………………….....12 3.3.1. 蒸鍍銀原子……………………………………………………..…12 3.3.2. 自然頻率量測與奈米顆粒傳輸…………………………………..13 3.3.3. 振幅與共振頻率關係量測………………..………………………14 4. 結果與討論………………………………………………………….....……......15 4.1. 待測物與固定端距離的影響…………………………………………..…15 4.2. 雙重共振模態……………………………………………………………..18 4.3. 振幅對共振頻率的影響…………………………………..........................18 5. 結論與展望……………………………………………………………...………20 參考文獻………………………………………………………………….……….…21 附表…………………………………………………………………………………..24 附圖…………………………………………………………………………………..27

    [1]. P. Poncharal, Z. L. Wang, D. Ugarte, and W. A. de Heer, Science 283, 1513 (1999).
    [2]. K. L. Ekinci, X. M. H. Huang, and M. L. Roukes, Appl. Phys. Lett. 84, 4469 (2004).
    [3]. B. Ilic and H. G. Craighead, J. Appl. Phys. 95, 3694 (2004).
    [4]. Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, and M. L. Roukes, Nano Lett. 6, 583 (2006).
    [5]. S. M. Tanner, J. M. Gray, and C. T. Rogers, K. A. Bertness and N. A. Sanford,  Appl. Phys. Lett. 91, 203117 (2007).
    [6]. Wikimedia Foundation, Inc., http://en.wikipedia.org/wiki/Mass_spectrometry
    [7]. T. Sakurai, T. T. Tsong and E. W. M□ller, Phys. Rev. B 10, 4205 (1974)
    [8]. S. Iijima, Nature, 354, 56 (1991).
    [9]. E. W. Wong, P. E. Sheehan, and C. M. Lieber, Science 227, 1971 (1997).
    [10]. J. P. Lu, Phys. Rev. Lett. 79, 1297 (1997).
    [11]. M. H. Zhao, V. Sharma, H. Y. Wei, et al., Nanotechnology 19, 235704 (2008).
    [12]. A. Salehi-Khojin, M. Mahinfalah, R. Bashirzadeh and B. Freeman, Compos. Struct. 78, 197 (2007).
    [13]. C. Y. Li and T. W. Chou, Phys. Rev. B 68, 073405 (2003).
    [14]. C. Y. Li and T. W. Chou, Appl. Phys. Lett. 84, 5246 (2004).
    [15]. M. Nishio, S. Sawaya, and S. Akita, Appl. Phys. Lett. 86, 133111 (2005).
    [16]. G. Y. Chen, T. Thundat, E. A. Wachter, and R. J. Warmack, J. Appl. Phys. 77, 3618 (1995).
    [17]. T. Thundat, E. A. Wachter, S. L. Sharp, and R. J. Warmack, Appl. Phys. Lett. 66, 1695 (1995).
    [18]. S. Dohn, R. Sandberg, W. Svendsen, and A. Boisen, Appl. Phys. Lett. 86, 233501 (2005).
    [19]. S. Dohn, W. Svendsen, A. Boisen, and O. Hansen, Rev. Sci. Instrum. 78, 103303 (2007).
    [20]. X. D. Bai, P. X. Gao, Z. L. Wang and E. G. Wang, Appl. Phys. Lett. 82 4806 (2003).
    [21]. L. Meirovich, Elements of Vibration Analysis (McGraw-Hill, New York, ed. 2, 1986).
    [22]. S. D. Senturia, Microsystem Design, 4th ed. (Kluwer Academic, Dordrecht, 2002), Chap. 10
    [23]. Roy R. Craig, Jr., Mechanics of Materials, 2nd ed. (Wiley, New York, 1999)
    [24]. Jacob N. Israelachvili, Intermolecular and Surface Force (Academic Press, London, 1991)
    [25]. Y. S. Huang, C. S. Chang, and T. T. Tsong, National Nano Project & Evaluation Conference, Taipei World Trade Center, Taipei, Taiwan (2006).
    [26]. K. Yamamoto, S. Akita, Y. Makayama, Jpn. J. Appl. Part 1 25, L917 (1996).
    [27]. M. C. Wu, C. L. Li, C. K. Hu, Y. C. Chang, Y. H. Liaw, L. W. Huang, C. S. Chang, T. T. Tsong, and T. Hsu, Phys.Rev. B 74, 125424 (2006).
    [28]. David B. Williams and C. Barry Carter, Transmission Electron Microscopy (Plenum, New York, 1996)
    [29]. 張淵智, 奈米碳管碳針製作整修與應用研究, 國立雲林科技大學工程科技研究所博士論文, 2004
    [30]. Yuan-Chih Chang, Yuan-Hong Liaw, Yang-Shan Huang, Tung Hsu, Chia-Seng Chang, and Tien-Tzou Tsong, Small (accepted)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE