簡易檢索 / 詳目顯示

研究生: 陳璟蔚
Chen, Ching-Wei
論文名稱: Noncoherent BICM-OFDM Receiver in Block Fading Channels
在塊狀衰退通道上之非相干位元交錯OFDM接收機
指導教授: 祁忠勇
Chi, Chong-Yung
張縱輝
Chang, Tsung-Hui
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 42
中文關鍵詞: 位元交錯正交分頻多工分集性
外文關鍵詞: Bit-interleaved coded modulation (BICM), orthogonal frequency-division multiplexing (OFDM),, diversity
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Orthogonal frequency-division multiplexing (OFDM) is known as an efficient technique
    to combat frequency-selective channels. In this paper, we show that the combination of
    bit-interleaved coded modulation (BICM) and OFDM achieves the full frequency diversity
    offered by a frequency-selective channel in noncoherent situation, conditioned on the
    minimum Hamming distance dfree of the convolutional code. This system has a simple
    Viterbi decoder with the modified cost metric. We can also reduce complexity by cyclic
    ML in large scale case. In the identifiability analysis, we show that under independently
    and identically distributed (i.i.d.) Rayleigh fading channels the proposed schemes can
    ensure a probability one identifiability condition using a very small number of pilots.
    We then prove that in L-pilot-symbol scheme, it can achieve the algebraic diversity. We
    verify our analytical results via simulations, including channels employed in the IEEE
    802.11 standards. Our simulation results show that the proposed noncoherent receiver
    can provide good bit error rate performance.


    正交分頻多工 (Orthogonal frequency-division multiplexing, 簡稱
    OFDM) 是多載波調變技術的一種是由於高速資料傳輸和有效對抗
    通道為選擇性頻率衰減的優點下,已成為現今為無線通訊廣泛所採
    用。它也是一種對抗頻率選擇通道 (frequency selective channel) 非常
    有效率的技術,而位元交錯 (Bit-interleaved coded modulation, 簡稱
    BICM) 在現代的無線通訊系統中,位元交錯調變碼被利用來克服瑞
    雷(Rayleigh)衰減通道,兩者均是下一世代通訊系統所採用的重要
    技術。在這篇論文中,我們展示出在非相干頻率選擇通道下,位元交
    錯 (Bit-interleaved coded modulation, 簡稱 BICM) 和正交分頻多工
    (OFDM) 的組合在已知摺積碼 (convolutional code) 的最小漢明
    (Hamming) 距離情況下可以達到代數分集性 (algebraic diversity)。這
    個系統有一個 Viterbi 解碼器,而且我們在每個階段的每一個節點必
    須計算一個目標值,但我們也提出可以不必在每個階段的每個節點都
    去計算這個目標值來減少計算複雜度,所使用的方法是週期性的最大
    勢然偵測。我們提供了一個資料鑑別的方法,對於盲蔽唯一資料鑑別,
    我們證明所提出的檢測機制在獨立瑞雷衰減通道 (Rayleigh fading
    channels) 中只需使用非常少量的前導資料 (pilot data) 就能保
    證資料鑑別的唯一性,接著我們證明在頻率選擇通道情況下它可以達
    到代數分集性,我們藉由模擬結果來證實我們所做的分析,所使用的
    通道是跟據 IEEE 802.11 的標準。最後,我們的模擬結果展示出我
    們所提出的非相干位元交錯正交分頻多工接收機有非常好的位元錯
    誤率效能。

    CHINESE ABSTRACT ii ABSTRACT iii CHINESE ACKNOWLEDGMENTS iv CONTENTS v 1 INTRODUCTION 1 2 BICM-OFDM SIGNAL MODEL 4 2.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 BICM-OFDM Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 Convolutional Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4 Interleaver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 COHERENT BICM-OFDM RECEIVER 11 3.1 Coherent BICM-OFDM Receiver . . . . . . . . . . . . . . . . . . . . . . . 11 3.2 Coherent Full Frequency Diversity . . . . . . . . . . . . . . . . . . . . . . . 13 4 NONCOHERENT BICM-OFDM RECEIVER 15 4.1 Why Noncoherent (Blind) Detection? . . . . . . . . . . . . . . . . . . . . . 15 4.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.3 Implementation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.4 Complexity Reduction for Large Scale OFDM . . . . . . . . . . . . . . . . 19 5 UNIQUE CHANNEL IDENTIFIABILITY AND ALGEBRAIC DIVERSITY 21 5.1 Unique Channel Identifiability Conditions . . . . . . . . . . . . . . . . . . 21 5.2 Achievable Algebraic Diversity of Noncoherent BICM-OFDM Receiver . . 23 5.2.1 Asymptotic PEP and Algebraic Diversity . . . . . . . . . . . . . . . 24 5.2.2 Algebraic diversity of Proposed Schemes . . . . . . . . . . . . . . . 25 6 SIMULATION RESULTS 29 7 CONCLUSIONS 34 APPENDIX A 36 REFERENCES 40

    [1] O. Edfors, M. Sandell, J. J. van de Beek, and S. K.Wilson, “OFDM channel estimation
    by singular value decomposition,” IEEE Trans. Commun., vol. 46, no. 7, pp.
    931–939, July 1998.
    [2] R. Negi and J. Cioffi, “Pilot tone selection for channel estimation in a mobile OFDM
    system,” IEEE Trans. Consumer Electronics, vol. 44, no. 3, pp. 1122–1128, Aug.
    1998.
    [3] S. Zhou, B. Muquet, and G. B. Giannakis, “Subspacebased (semi-) blind channel
    estimation for block precoded space-time OFDM,” IEEE Trans. Signal Process., vol.
    50, no. 5, pp. 1215–1228, May 2002.
    [4] B. Muquet, M. de Courville, and P. Duhamel, “Subspace-based blind and semi-blind
    channel estimation for OFDM systems,” IEEE Trans. Signal Process., vol. 50, no. 7,
    pp. 1699–1712, July 2002.
    [5] Z. Liu and G. B. Giannakis, “Block differentially encoded OFDM with maximum
    multipath diversity,” IEEE Trans. Wireless Commun., vol. 2, no. 3, pp. 420–423,
    May 2003.
    [6] H. Wang, Y. Lin, and Biao Chen, “Data-efficient blind OFDM channel estimation
    using receiver diversity,” IEEE Trans. Signal Process., vol. 51, no. 10, pp. 2613–2622,
    Oct. 2003.
    [7] E. Zehavi, “8-PSK trellis codes for a Rayleigh channel,” IEEE Trans. Commun., vol.
    40, no. 5, pp. 873–884, May 1992.
    [8] E. Akay and E. Ayanoglu, “Achieving full frequency and space diversity in wireless
    systems via BICM, OFDM, STBC, and viterbi decoding,” IEEE Trans. Commun.,
    vol. 54, no. 12, pp. 2164–2172, Dec. 2006.
    [9] G. Caire, G. Taricco, and E. Biglieri, “Bit-interleaved coded modulation,” IEEE
    Trans. Inf. Theory., vol. 44, no. 3, pp. 927–946, May 1998.
    [10] W.-K. Ma, P.-C. Ching, and Z. Ding, “Semidefinite relaxation based multiuser detection
    for M-ary PSK multiuser systems,” IEEE Trans. Signal Process., vol. 52, no.
    10, pp. 2862–2872, Oct. 2004.
    [11] T-H. Chang, W.-K. Ma, and Chong-Yung Chi, “Group-wise blind OFDM ML detection
    for complexity reduction,” Proc. 14th European Signal Processing Conference,
    Florence, Italy, Sept. 4-8, 2006.
    [12] N.Chotikakamthorn and H.Suzuki, “On identifiability of OFDM blind channel estimation,”
    Proc. IEEE Vehicular Techonology Conference, vol. 4, Amsterdam, Netherlands,
    pp. 2358–2361, Sept. 19-22, 1999.
    [13] “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications.
    High-Speed Physical Layer in the 5 GHz Band,” IEEE 802.11a, IEEE [Online].
    Available: http://standards.ieee.org/getieee802/802.11.html
    [14] E. G. Larsson, “Diversity and channel estimation errors,”IEEE Trans. Commun. vol.
    52, no. 2, pp. 205–208, Feb. 19-22, 2004.
    [15] —–, “High performance Viterbi decoder for OFDM systems,”Proc. IEEE VTC, Milan,
    Italy, vol. 1, pp. 323–327, May 2004.
    [16] J. F. Sturm, “Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric
    cones,” Optimization Methods and Software, vol. 11-12, pp. 625-653, 1999,
    also see the website http://sedumi.mcmaster.ca/.
    [17] S. Boyd and L. Vandenberghe, “Convex Optimization,” Cambridge, UK: Cambridge
    University Press, 2004.
    [18] S. M. Alamouti, “A simple transmit diversity technique for wireless communications,”
    IEEE J. Sel. Areas Commun., vol. 16, no. 8, pp. 1451–1458, Oct. 1998.
    [19] D. Rende and T. F. Wong, “Bit-interleaved space-frequency coded modulation for
    OFDM systems,”in Proc. IEEE ICC, May 2003, vol. 4, pp. 2827–2831.
    [20] U. Wachsmann, R. F. H. Fischer, and J. B. Huber, “Multilevel codes: Theoretical
    concepts and practical design rules,”IEEE Trans. Inf. Theory, vol. 45, no. 5, pp.
    1361–1391, Jul. 1999.
    [21] X. Li and J. A. Ritcey, “Trellis-coded modulation with bit interleaving and iterative
    decoding,” vol. 17, no. 4, pp. 715–724, Apr. 1999.
    [22] H.E. Gamal, D. Aktas, and M.O. Damen, “Noncoherent spaceVtime coding: An
    algebraic perspective,”IEEE Trans. Inform. Theory, vol. 51, no. 7, pp. 2380–2390,
    July 2005.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE