研究生: |
朱奕豪 Jhu, Yi-Hao |
---|---|
論文名稱: |
Entanglement Entropy Spectrum in Honeycomb Lattice |
指導教授: |
陳柏中
Chen, Po-Chung |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 42 |
中文關鍵詞: | 量子糾纏 、量子糾纏熵 、六角晶格 、邊界態 |
外文關鍵詞: | Entanglement, Entanglement entropy, Honeycomb Lattice, Edge state |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
In this thesis, we using the tight-binding anisotropic honeycomb lattice to investigate the zero-energy edge states and the bipartite entanglement for the total system at half filling and $T=0$ by the entanglement entropy spectrum. The zero-energy edge states for the system having two infinite and parallel bearded or zigzag edges are found to survive only when the the system with PBC has two Dirac points. On the contrary, there is no zero-energy edge state for the system having two infinite and parallel armchair edges. On the other hand, we numerically calculate the entanglement entropy spectrum of the system $A$ that has finite bearded edges on up and down and finite armchair edges on left and right. The maximal entangled states of the entanglement entropy spectrum are found to have one-to-one correspondence to the zero-energy edge states of the system $A$ with OBC which means we numerically proves the one-to-one coorespondence between the zero-energy edge states and the maximal entangled states even when the edge is finite. In addition, we also find the zero-energy edge state of the system with longer bearded edge can be created by combining the zero-energy edge states of the system with shorter bearded edge.
[1] M. A. Nielsen and C. I., Quantum Computation and Quantum Communication (Cambridge University Press, Cambridge, England, 2000).
[2] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, Phys. Rev. A 54,
3824 (1996).
[3] L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Rev. Mod. Phys. 80, 517 (2008).
[4] X. G. Wen, Quantum Field Theory of Many-Body Systems (Oxford University Press, New York, 2004).
[5] J. Vidal, R. Mosseri, and J. Dukelsky, Phys. Rev. A 69, 054101 (2004).
[6] G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev, Phys. Rev. Lett. 90, 227902 (2003).
[7] T. J. Osborne and M. A. Nielsen, Phys. Rev. A 66, 032110 (2002).
[8] S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
[9] U. Schollw\"{o}ck, Rev. Mod. Phys. 77, 259 (2005).
[10] M. Fannes, B. Nachtergaele, and R. F. Werner, Lett. Math. Phys. 25, 249 (1992).
[11] G. Vidal, Phys. Rev. Lett. 99, 220405 (2007).
[12] I. Klich, G. Refael, and A. Silva, Phys. Rev. A 74, 032306 (2006).
[13] J. Eisert, M. Cramer, and M. B. Plenio, Rev. Mod. Phys. 82, 277 (2010).
[14] T. M. Fiola, J. Preskill, A. Strominger, and S. P. Trivedi, Phys. Rev. D 50, 3987 (1994).
[15] C. Holzhey, F. Larsen, and F. Wilczek, Nuclear Physics B 424, 443 (1994).
[16] J. D. Bekenstein, Phys. Rev. D 7, 2333 (1973).
[17] G. Vidal, Phys. Rev. Lett. 91, 147902 (2003).
[18] K. Audenaert, J. Eisert, M. B. Plenio, and R. F. Werner, Phys. Rev. A 66, 042327 (2002).
[19] M. B. Hastings, Phys. Rev. B 69, 104431 (2004).
[20] M. B. Hastings, Phys. Rev. B 76, 035114 (2007).
[21] M. B. Hastings, J. Stat. Mech.: Theory and Exp. 2007, P08024 (2007).
[22] M. B. Plenio, J. Eisert, J. Dreiig, and M. Cramer, Phys. Rev. Lett. 94, 060503 (2005).
[23] M. Cramer, J. Eisert, and M. B. Plenio, Phys. Rev. Lett. 98, 220603 (2007).
[24] D. Gioev and I. Klich, Phys. Rev. Lett. 96, 100503 (2006).
[25] M. M. Wolf, Phys. Rev. Lett. 96, 010404 (2006).
[26] H. Widom, Operator Theory: Adv. Appl. 4, 477 (1982).
[27] T. Barthel, M.-C. Chung, and U. Schollw�ock, Phys. Rev. A 74, 022329 (2006).
[28] W. Li, L. Ding, R. Yu, T. Roscilde, and S. Haas, Phys. Rev. B 74, 073103 (2006).
[29] S. Ryu and Y. Hatsugai, Phys. Rev. B 73, 245115 (2006).
[30] S. Ryu and Y. Hatsugai, Phys. Rev. Lett. 89, 077002 (2002).
[31] S.-A. Cheong and C. L. Henley, Phys. Rev. B 69, 075111 (2004).
[32] M.-C. Chung and I. Peschel, Phys. Rev. B 64, 064412 (2001).