研究生: |
劉建成 Liu, Chien-Cheng |
---|---|
論文名稱: |
共軛高分子薄膜電晶體元件特性的最佳化 Performance improvement of conjugated polymer thin-film transistors |
指導教授: |
洪勝富
Horng, Sheng-Fu 孟心飛 Meng, Hsin-Fei |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 91 |
中文關鍵詞: | 共軛高分子 、薄膜電晶體 |
外文關鍵詞: | polymer, thin-film transistor |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究高分子材料(P3HT)薄膜電晶體的元件特性,包括其載子遷移率、開關比以及其光氧化的特性。P3HT薄膜電晶體能製作在玻璃與塑膠基板上,且具有大面積製作、高柔軟性、低溫製程與低成本的優點,使其能比Si製程電晶體有較佳的應用性。然而因為在玻璃與塑膠基板上缺乏平坦且緻密的熱氧化之二氧化矽絕緣層,P3HT的薄膜電晶體的元件特性將大大地降低。第三章描述在玻璃基板上製作P3HT薄膜電晶體,ITO、Al 和Cr 當作閘極電極,PECVD 二氧化矽為絕緣層,利用氧電漿處理,絕緣層表面粗糙度能降到0.7nm,並利用dip-coating技術沉積主動層,使得其載子遷移率能達到0.3 cm2 /V s。第四章描述利用兩極元件搭配電晶體特性研究不同絕緣層與P3HT界面間的載子傳輸關係。氧掺雜的程度與界面OH鍵的多寡有關而這也直接影響了元件的關閉電流,此外比較了spin-coating 與dip-coating成膜法關閉電流的差異,因為dip-coating成膜法的 P3HT具有多孔性的結晶使得其關閉電流遠大於spin-coating成膜法。而我們控制氧掺雜的程度而使得P3HT電晶體其開關比達到29000。第五章描述光、氧、溫度與P3HT材料的研究,利用長時間的觀察氧在P3HT材料內吸附與脫附的關係。
[1] M. Pope, C. E. Swenberg, Electronic Processes in Organic Crystals and Polymers, 2nd ed., Oxford University Press, Oxford 1999, pp. 337-340.
[2] C. W. Tang, S. A. Van Slyke, Appl. Phys. Lett. 1987, 51, 913.
[3] J. H. Burroughes, D. D. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn, A. B. Holmes, Nature 1990, 347, 539.
[4] F. Ebisawa, T. Kurokawa, S. Nara, J. Appl. Phys. 1983, 54, 3255.
[5] K. Kudo, M. Yamashina, T. Moriizumi, Jpn. J. Appl. Phys 1984, 23, 130.
[6] A. Tsumura, H. Koezuka, T. Ando, Appl. Phys. Lett. 1986, 49, 1210.
[7] For previously published graphs of device performance vs. year reported see: a) C. D. Dimitrakopoulos, B. K. Furman, T. Graham, S. Hegde, S. Purushothaman, Synth. Met. 1998, 92, 47. b) A. Hellemans, Science 1999, 283, 771.
[8] R. H. Friend, J. Burroughes, T. Shimoda, Phys. World 1999, 12, 35.
[9] S. Forrest, MRS Bull. 2001, February, 108.
[10] G. Yu, A. J. Heeger, in Proceedings of 23rd International Conference on the Physics of Semiconductors, Vol. 1 (Eds: M. Scheffler, R. Zimmerman), World Scientific, Singapore 1996, p. 35.
[11] Y. Taur, T. H. Ning, Fundamentals of Modern VLSI Devices, Cambridge University Press, Cambridge 1998, p. 11.
[12] R. Wisnieff, Nature 1998, 394, 225.
[13] B. Comiskey, J. D. Albert, H. Yoshizawa, J. Jacobson, Nature 1998, 394, 253.
[14] N. K. Sheridon, US Patent 4 126 854, 1978.
[15] B. Crone, A. Dodabalapur, A. Gelperin, L. Torsi, H. E. Katz, A. J. Lovinger, Z. Bao, Appl. Phys. Lett. 2001, 78, 2229.
[16] C. J. Drury, C. M. J. Mutsaers, C. M. Hart, M. Matters, D. M. de Leeuw, Appl. Phys. Lett. 1998, 73, 108.
[17] H. Akimichi, K. Waragai, S. Hotta, H. Sakaki, Appl. Phys. Lett. 1991, 58, 1500 – 1502.
[18] a) T. Weil, U. M. Wiesler, A. Herrmann, R. Bauer, J. Hofkens, F. C. De Schryver, K. MGllen, J. Am. Chem. Soc. 2001, 123, 8101 – 8108.
[19] M. S. A. Abdou, F. P. Orfino, Y. Son, S. Holdcroft, J. Am. Chem. Soc. 1997, 119, 4518 – 4524.
[20] Z. Bao, A. Dodabalapur, A. J. Lovinger, Appl. Phys. Lett. 1996, 69, 4108 – 4110.
[21] T. A. Chen, X. Wu, R. D. Rieke, J. Am. Chem. Soc. 1995, 117, 233 – 244.
[22] C. D. Dimitrakopoulos and P. R. L. Malenfant, Adv. Mater. 2002, 14, No. 2, 99-117.
[23] S. M. Sze, Physics of Semiconductor Devices, 2nd ed., Wiley, New York 1981, pp. 438-453.
[24] L. Kosbar, C. D. Dimitrakopoulos, D. J. Mascaro, Mater. Res. Soc. Symp. Proc. 2001, 665.
[25] C. D. Dimitrakopoulos, L. Kosbar, unpublished results.
[26] H. Sirringhaus, N. Tessler, and R. H. Friend, Science 280, 1741 (1998).
[27] Bao, A. Bodabalapur, and A. J. Lovinger, Appl. Phys. Lett. 69, 4108 (1996).
[28 ] R. J. Kline, M. D. McGehee, E. N. Kadnikova, J. Liu, and J. J. M. Frechet,
Adv. Mater. _Weinheim, Ger._ 15, 1519 (2003).
[29] J. F. Chang, B. Sun, and D. W. Breiby, Chem. Mater. 16, 4772 (2004).
[30] G. Wang, T. Hirasa, and D. Moses, Synth. Met. 146, 127 (2004).
[31] D. M. Russell, C. J. Newsome, and S. P. Li, Appl. Phys. Lett. 87, 222109 (2005).
[32] A. Babel and S. A. Jenekhe, J. Phys. Chem. B 107, 1749 (2003).
[33] A. Babel and S. A. Jenekhe, Macromolecules 36, 7759 (2003).
[34] G. M. Wang, D. Moses, A. J. Heeger, H. M. Zhang, M. Narasimhan, and R. E. Demaray, J. Appl. Phys. 95, 316 (2004).
[35] S. C. Deshmukh and E. S. Aydil, Appl. Phys. Lett. 65, 3185 (1994).
[36] Z. L. Li, S. C. Yang, H. F. Meng, and Y. S. Chen, Appl. Phys. Lett. 84, 3558 (2004).
[37] Y. Kuo, Thin Film Transistors _Kluwer Academic, Dordrecht, 2004, Chap. 5, p. 326.
[38 ] H. Sirringhaus, P. J. Brown, and R. H. Friend, Nature _London_ 14, 401 (1999).
[39] G. Wang, J. Swensen, D. Moses, and A. J. Heeger, J. Appl. Phys. 93, 6137 (2003).
[40] H. G. O. Sandberg, G. L. Frey, M. N. Shkunov, H. Sirringhaus, and R. H. Friend, Langmuir 18, 10176 (2002).
[41] H. Sirringhaus, P.J. Brown, R.H. Friend, Nature (London) 401 (1999) 685.
[42] G.Wang, T. Hirasa, D. Moses, A.J. Heeger, Synth. Met. 146 (2004) 127.
[43] H. Sirringhaus, N. Tessler, R.H. Friend, Science 280 (1998) 1741.
[44] J.F. Chang, B. Sun, H. Sirringhaus, Chem. Mater. 16 (2004) 4772.
[45] H.F. Meng, C.C. Liu, C.J. Jiang, Y.L. Yeh, S.F. Horng, C.S. Hsu, Appl. Phys. Lett. 89
(2006) 243503.
[46] M. Halik, H. Klank,W. Radlik, Appl. Phys. Lett. 81 (2002) 289.
[47] J. Park, S.Y. Park, H.H. Lee, Appl. Phys. Lett. 85 (2004) 3284.
[48] S.K. Park, Y.H. Kim, M.G. Kwak, Synth. Met. 139 (2003) 377.
[49] C.K. Lu, H.F. Meng, Phys. Rev. B 75 (2007) 235206.
[50] B. Mattis, P.C. Chang, V. Subramanian, Synth. Met. 156 (2006) 1241.
[51] C. Tanase, E.J. Meijer, P.W.M. Blom, D.M. de Leeuw, Org. Electron. 4 (2003) 33.
[52] G.M.Wang, J. Swensen, D. Moses, A.J. Heeger, J. Appl. Phys. 93 (2003) 6137.
[53] J. Veres, S. Ogier, G. Lloyd, D. de Leeuw, Chem. Mater. 16 (2004) 4543.
[54] S. Grecu, M. Roggenbuck, A. Opitz, Org. Electron. 7 (2006) .
[55] H. F. Meng, C. C. Liu, C. J. Jiang, Y. L. Yeh, S. F. Horng, and C. S. Hsu, Appl. Phys. Lett. 89, 243503 (2006).
[56] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang,
Nat. Mater. 4, 864 (2005).
[57] Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant,
D. D. C. Bradley, M. Giles, I. McCulloch, C. S. Ha, and M. Ree, Nat. Mater. 5, 197 (2006).
[58] B. A. Mattis, P. C. Chang, and V. Subramanian, Synth. Met. 156, 1241 (2006).
[59] S. M. Sze, Physics of Semiconductor Devices, 2nd ed. _Central Book, Taiwan, 1983_, Chap. 14, p. 794.
[60] T. D. Anthopoulos and T. S. Shafai, Thin Solid Films 441, 207 (2003).
[61] M. S. A. Abdou, F. P. Orfino, Y. Son, and S. Holdcroft, J. Am. Chem. Soc. 119, 4518 (1997).
[62] M. S. A. Abdou, F. P. Orfino, Z. W. Xie, M. J. Deen, and S. Holdcroft, Adv. Mater. 6, 838 (1994).
[63] S. Hoshino, M. Yoshida, S. Uemura, T. Kodzasa, N. Takada, T. Kamata, and K. Yase, J. Appl. Phys. 95, 5088 (2004).
[64] G. Horowitz, X. Peng, D. Fichou, and F. Garnier, J. Appl. Phys. 67, 528 (1990).
[65] E. J. Meijer, C. Detcheverry, P. J. Baesjou, E. van Veenendaal, D. M. De Leeuw, and T. M. Klapwijk, J. Appl. Phys. 93, 4831 (2003).
[66]S. Ogawa, T. Naijo, Y. Kimura, H. Ishii, and M. Niwano, Jpn. J. Appl. Phys., Part 1 45, 530 (2006).
[67] E. J. Meijer, A. V. G. Mangnus, B. H. Huisman, G. W. t Hooft, D. M. de Leeuw, and T. M. Klapwijk, Synth. Met. 142, 53 (2004).
[68] T. D. Anthopoulos and T. S. Shafai, Appl. Phys. Lett. 82, 1628 (2003).
[69] B. van der Zanden and A. Goossens, J. Appl. Phys. 94, 6959 (2003).
[70] Y. Y. Noh, D. Y. Kim, and K. Yase, J. Appl. Phys. 98, 074505 (2005).
[71] Y. Y. Noh, J. Ghim, S. J. Kang, K. J. Baeg, D. Y. Kim, and K. Yase, J. Appl. Phys. 100, 094501 (2006).
[72]C. K. Lu and H. F. Meng, Phys. Rev. B 75, 235206 (2007).
[73] T. Nishi, K. Kanai, Y. Ouchi, M. R. Willis, and K. Seki, Chem. Phys. 325,
121 (2006).
[74] V. Derycke, R. Martel, J. Appenzeller, and Ph. Avouris, Appl. Phys. Lett. 80, 2773 (2002).
[75] D. B. A. Rep, A. F. Morpurgo, W. G. Sloof, and T. M. Klapwijk, J. Appl. Phys. 93, 2082 (2003).
[76] R. Payerne, M. Brunb, P. Rannoua, R. Baptistb, and B. Grevina, Synth. Met. 146, 311 (2004).