研究生: |
陳柏榮 Chen, Bo-Rong |
---|---|
論文名稱: |
二氧化鈦奈米粒子製備與分析 Preparation and Structural Analysis of Tb-doped TiO2 Nanoparticles |
指導教授: |
蘇雲良
Soo, Yun-Liang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 54 |
中文關鍵詞: | 二氧化鈦 |
外文關鍵詞: | Titanium dioxide |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
二氧化鈦由於被發現在摻雜稀土元素後,螢光光譜上有成功的將外界激發光能量轉移到稀土元素而出現稀土元素特徵光譜的發現,本論文希望以溶膠凝膠法製備奈米粒子,藉由改變反應條件來增進摻雜的稀土元素特徵螢光的發光效率。
本實驗使用溶膠凝膠法(sol-gel)製備二氧化鈦奈米粒子,製備過程中以異丙氧烷基鈦(TTIP)作為前驅物,並加入TbCl3以摻雜Tb離子,背景溶劑使用乙醇,硝酸做為酸性催化劑,經過乾燥處理後經過500℃~900℃通氧氣煅燒得到摻雜Tb的二氧化鈦奈米粒子,其大小經由改變硝酸重量百分比濃度以及Tb濃度得到7nm~18nm之奈米粒子。
實驗中得到的樣品以XRD、TEM、EXAFS和PL與PLE的量測來探討其晶型、顆粒大小與發光機制。由XRD、TEM的結果可以發現粉末大小分布約為7nm~18nm, 發現到Tb摻雜濃度越高時對粒徑越小,原因據推論為奈米粒子表面所形成的Tb-O-Ti鍵結,並以EXAFS證明此鍵結的存在。另外藉由PL光譜,發現硝酸濃度影響了主體螢光與Tb特徵螢光的放射強度,且兩者變化趨勢相同;由PLE結果得知Tb特徵螢光的吸收峰為378nm,屬於二氧化鈦主要吸收區段之內,此兩種發現皆提供了可能的成功能量轉移機制的訊息。最後PL光譜中的寬譜帶形狀與位置與文獻中二氧化鈦主體螢光相同,因此推測PLE另一個吸收峰應來自於螢光強度較強的二氧化鈦主體螢光。
Abstract
Lanthanide doped semiconductors have attracted great interest due to potential applications in photoelectric devices and optical communications, as well as excellent mechanical, thermal and anticorrosive properties.
To study the physical properties of Tb-doped titanium dioxide nanoparticles, a series of samples have been synthesized by using sol-gel method under different preparation conditions (dopant concentrations and acidic catalyst). XRD patterns, TEM images, EXAFS analysis and PL、PLE spectra were used to characterize TiO2:Tb nanoparticles. As revealed by XRD, the average particle size of the samples appears to decrease with increasing Tb3+ concentration. On the other hand, the phase transition temperature increases with Tb3+ concentration. Both are attributed to the formation of Tb-O-Ti bond on the surface of titanium dioxide particles. Because the ionic radius of Tb3+ is larger than that of Ti4+, Tb can hardly substitute for the Ti4+ sites. Instead, Tb-O-Ti bonds are formed on the surface and therefore restrain the crystallite growth and phase transformation. In order to offer proof of this speculation, the local structure of Tb ions has been studied by EXAFS analysis, and Tb-O-Ti bonds were directly observed.
Observation of a peak at 378nm in the PLE spectra and the same trend of variation in the photoluminescence spectra of the host (broad band from 400nm to 700nm) and dopant (characteristic lines at 486nm, 543nm, 581nm, and 616nm) as the nitric acid concentration is changed in the sol-gel process are considered as strong indication of energy transfer between host and terbium.
參考文獻
[1]. A. Peng, E. Xie, C. Jia, R. Jiang, H. Lin, Mater. Lett. 59 (2005) 3866
[2]. P.Y. Jia, J. Lin, M. Yu, J. Lumin. 122–123 (2007) 134
[3]. B. Zou, L. Xiao, T. Li, J. Zhao, Z. Lai, S. Gu, Appl. Phys. Lett. 59 (1991) 1826.
[4]. Y. Liu, R.O. Claus, J. Am. Chem. Soc. 119 (1997) 5273
[5]. Montoncello F., Carotta M. C., Cavicchi B., Ferroni M., Giberti A. ,2003, J. Appl.
[6]. H. Choi, J.H. Kima, S. Yi, B.K. Moon, J.H. Jeong, J. Alloy Comp. 408 (2006) 846
[7]. F.B. Li, X.Z. Li, M.F. Hou, K.W. Cheah, W.C.H. Choy, Appl. Catal A: General 285
(2005) 181.
[8]. Y. Zhang, H. Zhang, Y. Xu, Y. Wang, J. Solid State Chem. 177 (2004) 3490.
[9]. T. Peng, D. Zhao, H. Song, C. Yan, J. Mol. Catal. A: Chem. 238 (2005) 119.
[10]. Q.-Z. Yan, X.-T. Su, Z.-Y. Huang, C.-C. Gea, J. Eur. Ceram. Soc. 26 2006) 915.
[11]. From http://en.wikipedia.org/wiki/TiO2.
[12]. Dolmatov Yu. D., 1969, Zhurnal Prikladnoi Khimii, Vol.42, No.8, p1725
[13]. Jerman Z., 1996, Collect. Czech. Chem. Commun. 31, p3280
[14]. Dislich H., 1971, Glastechn. Ber. 44, p1
[15]. Dislich H., 1971, Angew. Chem. 10, p363
[16]. Aelion R., Loebel A., Eirich F., 1950, Recueil Travaux Chimiques 69, p61
[17]. Aelion R., Loebel A., Eirich F., 1950, J. Am. Chem. Soc. 72, p5705-5712
[18]. Livage J., Aegeter M. A., Jafelicci M. Jr., Souza D. F., Zanotto E. D. , 1989,
“Sol-Gel Science and Technology”, Singapore, World Scientific Publication,
p103-152
[19]. From http://cheminfo.chemi.muni.cz/materials/InorgMater/sol_gel.pdf
[20]. Sakka S., Kamiya K., 1980, J. Non-Cryst. Solids 42, p403
[21]. K. Kamiya, K. Tanimoto, Yoko T., 1986, J. Mater. Sci. Lett. 5, p402
[22]. P. J. Chen. ”Preparation and X-Ray Analysis of Nanocrystal Materials”, 清大碩
士論文
[23].R. K. Her , 1978,” The Chemistry of Silica”, Wiley
[24]. Yoldas B. E., 1986, J. Mater. Sci 21, p1087
[25]. Sakka S., Kamiya K., 1982, J. Non-Cryst. Solids 48, p31
[26]. Sakka S., Brinker C. J., Clark D. E., Ullrich D. R., 1984, “Better Ceramics Through
Chemistry”, New York, Elsevier-North Holland, p91
[27]. Klein, L.C. Ann. Rev. Mater. Sci., 1985, 15, 227-248
[28]. Erwin B. M., Colby R. H., 2002, J. Non-Crystalline Solids ,Vol.- 70 - 307-310,
p225-231
[29]. Colby R. H., 2000, Phys. Rev. E 61, p1783-1792
[30]. Colby R. H., Zheng X., Rafailovich M. H., Sokolov J., Peiffer D. G., chwarz S. A.,
hemechny Y., Nguyen D., 1998, Phys. Rev. Lett. 81, p3876-3879.
[31]. 劉如熹, 劉宇恆., 2006 ,“發光二極體用氧氮螢光粉介紹”
[32]. C. R. Ronda., 2008,“Luminescence:From Theory to Applications”.
[33]. From www.advancedaquarist.com/2006/9/aafeature stoke.
[34]. G. Wakefield , H.A. Keron , P.J. Dobson , J.L. Hutchison., Journal of Physics and
Chemistry of Solids 60 (1999) 503.
[35]. From http://www.lab.anhb.uwa.edu.au/hb313/main_pages/timetable/Pracs/
electron%20microscopm%20LF1.htm.
[36]. Saylers D. E., Sterns E. A., 1971, Phys. Rev. Lett. 27, p1204
[37]. C.J. Brinker and G.W. Scherer, Sol-Gel Science: The Physics and Chemistry of
Sol-Gel Processing (Academic Press, Inc.: New York, 1990).
[38]. Q.G. Zeng et al. / Journal of Luminescence 118 (2006) 301–307
[39]. G. Mirth and J.A. Lercher, J. Catal., 132 (1991) 244.
[40]. Malet P, Capitan MJ, Centero MA, Odriozola JA, Carrizosa I.J Chem Soc Faraday
Trans 1994;90:2783.
[41]. Schwartz V., Mullins D. R. ,Yan W., Zhu H., Dai S., Overbury S. H., 2007, J. Phys.
Chem. C 111, p17322-17332
[42]. Y. C. Zhu, C. X. Ding., J. Solid State Chemistry 145 (1999) 711.
[43]. Tang Q., Shen J., Zhou W., Zhang W., Yu W., Qian Y., 2003, J. Mater. Chem. 13,
p3103-3106.