簡易檢索 / 詳目顯示

研究生: 林哲億
論文名稱: 低溫環境下電鍍銅膜之性質研究
Characterization of Cu films prepared by electrodeposition at low temperature
指導教授: 廖建能
口試委員: 吳子嘉
甘炯耀
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 64
中文關鍵詞: 電鍍銅膜低溫
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在電子元件的製程中,金屬導線的填入主要是利用電鍍的方式。除了傳統的直流電鍍外,脈衝電鍍也被廣泛的應用在不同的製備需求上。然而在電鍍的研究中,關於電鍍液溫度的探討比較缺乏,尤其在室溫以下電鍍製程的研究非常稀少。此外,具有奈米雙晶的銅金屬因具有高機械強度以及良好的導電性,在近年來被廣泛的研究,而其中一種製備方式就是採用脈衝電鍍,而銅膜內的雙晶間距與脈衝電流的電流密度以及有效時間有關,但對於溫度的影響並沒有相關的研究。故在本研究中將探討直流電鍍以及脈衝電鍍在不同溫度下的影響,並探討溫度效應對於電鍍形成雙晶的影響。
      在本研究中發現,不論是直流電或是脈衝電流,工作電壓都會隨著溫度下降而上升,推測是因為電鍍液中的銅離子在低溫時擴散速率下降所造成。而在銅膜晶體成長方向的研究中發現,直流電鍍製程在低溫時會有明顯轉換,將從無優選方向轉成 (111) 面成長,而在脈衝電鍍中則無明顯的轉換。兩者間的差別可由銅原子在晶體表面擴散的速率以及電鍍時的過電位來解釋。而在表面形貌的部分,從SEM的觀察可發現,晶粒細化的現象在直流電中遠較脈衝電流中來的明顯,且從銅膜表面粗糙度的量測中,直流電的粗糙度會隨著溫度下降而下降,而脈衝電流則呈現相反的趨勢。主要的原因來自於成核半徑以及晶核成長方向的改變。另外在冰點以下時,由於電鍍液中的離子濃度呈現不均勻的分佈,造成工作電壓以及粗糙度都有反轉的趨勢。最後在脈衝電鍍銅膜的雙晶結構中,由TEM的結果可以發現雙晶的間距會隨著電鍍時的溫度下降而跟著縮減。而從硬度上的量測也證實此結果。推測是低溫下應力釋放的機制轉換及銅膜內應力上升的緣故。
      本實驗中證明低溫下電鍍確實能對銅膜的微結構進行改質,不同電流模式下,對於溫度的反應也不同。而在電鍍形成雙晶過程中,可在相同的電流密度下藉由降低電鍍液溫度來對雙晶密度做調整。故在未來的研究中,電鍍液的溫度將可引入製程的可變參數中,並探討最佳化的溫度範圍。


    目錄 誌謝 I 摘要 II Abstract III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章、緒論 1 1.1 背景簡介 1 1.2 研究動機 1 1.3 實驗方法 2 第二章、文獻回顧 3 2.1 脈衝電鍍方法研究 3 2.1-1 電鍍液中的離子分佈以及電極界面的離子擴散層厚薄 4 2.1-2 電極界面電雙層的結構以及對電鍍過程的影響 7 2.1-3 鬆弛時間中電鍍液以及電極表面的化學反應 9 2.2 奈米雙晶結構生成機制研究 10 2.2-1 形變雙晶機制 10 2.2-2 形變雙晶形成與外在條件的關係 11 2.2-3 電鍍形成雙晶 12 2.3 低溫電鍍現象研究 18 第三章、實驗步驟 21 3.1 電鍍種子層製備 21 3.2 電鍍條件以及環境控制 22 3.3 銅膜性質與微結構分析 24 第四章、結果與討論 27 4.1 工作電壓分析 27 4.1-1 平衡電位量測 27 4.1-2 過電位量測 29 4.2 銅膜成長方向分析 31 4.2-1 直流電鍍銅膜成長方向 31 4.2-2 脈衝電鍍銅膜成長方向 33 4.3 電流效率分析 35 4.3-1 直流電鍍電流效率 35 4.3-2 脈衝電鍍電流效率 38 4.4 電鍍銅膜的表面形貌分析 38 4.4-1 不同電鍍參數下的表面形貌變化 39 4.4-2 表面形貌的機制探討 (攝氏20 ~ 0度) 45 4.4-3 表面形貌的機制探討 (攝氏-2度) 49 4.5 不同溫度下脈衝電鍍形成雙晶結構的研究 52 4.5-1 穿透式電子顯微鏡分析 52 4.5-2 雙晶銅膜的硬度分析 56 第五章、結論與未來發展 59 5.1 結論 59 5.2 未來發展 59

    [1] Lu, L., Shen, Y., Chen, X., Qian, L., and Lu, K., Ultrahigh strength and high electrical conductivity in copper. Science, 304 (2004) 422-6.
    [2] Chen, K. C., Wu, W. W., Liao, C. N., Chen, L. J., and Tu, K. N., Observation of atomic diffusion at twin-modified grain boundaries in copper. Science, 321 (2008) 1066-9.
    [3] Lu, L., Chen, X., Huang, X., and Lu, K., Revealing the maximum strength in nanotwinned copper. Science, 323 (2009) 607-10.
    [4] Cui, B. Z., Han, K., Xin, Y., Waryoba, D. R., and Mbaruku, A. L., Highly textured and twinned Cu films fabricated by pulsed electrodeposition. Acta Materialia, 55 (2007) 4429-4438.
    [5] Li, W. L., Tao, N. R., and Lu, K., Fabrication of a gradient nano-micro-structured surface layer on bulk copper by means of a surface mechanical grinding treatment. Scripta Materialia, 59 (2008) 546-549.
    [6] Wang, K., Tao, N. R., Liu, G., Lu, J., and Lu, K., Plastic strain-induced grain refinement at the nanometer scale in copper. Acta Materialia, 54 (2006) 5281-5291.
    [7] Chandrasekar, M. and Pushpavanam, M., Pulse and pulse reverse plating—Conceptual, advantages and applications. Electrochimica Acta, 53 (2008) 3313-3322.
    [8] Gu, C., Xu, H., and Zhang, T.-Y., Fabrication of high aspect ratio through-wafer copper interconnects by reverse pulse electroplating. Journal of Micromechanics and Microengineering, 19 (2009) 065011.
    [9] Hayase, M. and Otsubo, K., Copper Deep Via Filling with Selective Accelerator Deactivation by a Reverse Pulse. Journal of The Electrochemical Society, 157 (2010) D628.
    [10] Paunovic, M. and Schlesinger, M., Fundamentals of Electrochemical Deposition, 2/E, (2006): A John Wiley & SONS, Inc, Publication.
    [11] Nikolić, N. D. and Branković, G., Effect of parameters of square-wave pulsating current on copper electrodeposition in the hydrogen co-deposition range. Electrochemistry Communications, 12 (2010) 740-744.
    [12] Ibl, N., Some theoretical aspects of pulse electrolysis. Surface Technology, 10 (1980) 81-104.
    [13] Chene, O. and Landolt, D., The influence of mass transport on the deposit morphology and the current efficiency in pulse plating of copper. Journal of Applied Electrochemistry, 19 (1989) 188-194.
    [14] Puippe, J. C. and Ibl, N., Influence of charge and discharge of electric double layer in pulse plating. Journal of Applied Electrochemistry, 10 (1980) 775-784.
    [15] Landolt, D. and Marlot, A., Microstructure and composition of pulse-plated metals and alloys. Surface and Coatings Technology, 169-170 (2003) 8-13.
    [16] Kim, M. J., Cho, S. K., Koo, H. C., Lim, T., Park, K. J., and Kim, J. J., Pulse Electrodeposition for Improving Electrical Properties of Cu Thin Film. Journal of The Electrochemical Society, 157 (2010) D564-D569.
    [17] Ibl, N., Puippe, J. C., and Angerer, H., Electrocrystallization in pulse electrolysis. Surface Technology 6(1978) 287-300.
    [18] Reddy, A. K. N., Preferredorientations in nickel electro-deposits: I. The mechanism of development of textures in nickel electro-deposits. Journal of Electroanalytical Chemistry 6(1963) 141-152.
    [19] Kremmer, K., Yezerska, O., Schreiber, G., Masimov, M., Klemm, V., Schneider, M., and Rafaja, D., Interplay between the deposition mode and microstructure in electrochemically deposited Cu thin films. Thin Solid Films, 515 (2007) 6698-6706.
    [20] Chan, T. C., Chueh, Y. L., and Liao, C. N., Manipulating the Crystallographic Texture of Nanotwinned Cu Films by Electrodeposition. Crystal Growth and Design, 11 (2011) 4970-4974.
    [21] Rosengaard, N. and Skriver, H., Calculated stacking-fault energies of elemental metals. Physical Review B, 47 (1993) 12865-12873.
    [22] Zhang, X., Anderoglu, O., Hoagland, R. G., and Misra, A., Nanoscale growth twins in sputtered metal films. JOM, 60 (2008) 75-78.
    [23] Meyers, M. A., Vohringer, O., and Lubarda, V. A., The onset of twinning in metals- a constitutive description. Acta Materialia, 49 (2001) 4025-4039.
    [24] Murr, L. E., Temperature coefficient of twin-boundary energy- The determination of stacking-fault energy from the coherent twin-boundary energy in pure F.C.C. metals. Scripta Metallurgica, 6 (1972) 203-208.
    [25] Heino, P., Perondi, L., Kaski, K., and Ristolainen, E., Stacking-fault energy of copper from molecular-dynamics simulations. PHYSICAL REVIEW B, 60 (1999) 14625-14631.
    [26] Puippe, J. C. and Leaman, F., Theory and practice of pulse plating, (1986), United States of America: American Electroplaters and Surface Finishers Society. 247.
    [27] Aifantis, K. E. and Konstantinidis, A. A., Hall–Petch revisited at the nanoscale. Materials Science and Engineering: B, 163 (2009) 139-144.
    [28] Chen, X. H., Lu, L., and Lu, K., Electrical resistivity of ultrafine-grained copper with nanoscale growth twins. Journal of Applied Physics, 102 (2007) 083708.
    [29] Xu, D., Kwan, W. L., Chen, K., Zhang, X., OzoliņŠ, V., and Tu, K. N., Nanotwin formation in copper thin films by stress/strain relaxation in pulse electrodeposition. Applied Physics Letters, 91 (2007) 254105.
    [30] Xu, D., Sriram, V., Ozolins, V., Yang, J.-M., Tu, K. N., Stafford, G. R., and Beauchamp, C., In situ measurements of stress evolution for nanotwin formation during pulse electrodeposition of copper. Journal of Applied Physics, 105 (2009) 023521.
    [31] Kongstein, O. E., Bertocci, U., and Stafford, G. R., In Situ Stress Measurements during Copper Electrodeposition on (111)-Textured Au. Journal of The Electrochemical Society, 152 (2005) C116.
    [32] Lee, H., Nix, W. D., and Wong, S. S., Studies of the driving force for room-temperature microstructure evolution in electroplated copper films. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 22 (2004) 2369.
    [33] Chung, C. K., Chang, W. T., and Hung, S. T., Electroplating of nickel films at ultra low electrolytic temperature. Microsystem Technologies, 16 (2009) 1353-1359.
    [34] Bard, A. J. and Faulkner, L. R., Electrochemical Methods: Fundamentals and Applications, (2001): John Wiley & Sons, Inc.
    [35] Kelly, J. J., Goods, S. H., Talin, A. A., and Hachman, J. T., Electrodeposition of Ni from Low-Temperature Sulfamate Electrolytes. Journal of The Electrochemical Society, 153 (2006) C318.
    [36] Grujicic, D. and Pesic, B., Electrodeposition of copper-the nucleation mechanisms. Electrochimica Acta, 47 (2002) 2901-2912
    [37] Hong, B., Jiang, C. H., and Wang, X. J., Influence of complexing agents on texture formation of electrodeposited copper. Surface and Coatings Technology, 201 (2007) 7449-7452.
    [38] Suni, I. I. and Du, B., Cu Planarization for ULSI Processing by Electrochemical Methods - A Review. IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING 18 (2006) 341-349.
    [39] Tsai, W. C., Wan, C. C., and Wang, Y. Y., Mechanism of copper electrodeposition by pulse current and its relation to current efficiency. Journal of Applied Electrochemistry, 32 (2002) 1371-1378.
    [40] Chen, C. J. and Wan, C. C., A Study of the Current Efficiency Decrease Accompanying Short Pulse Time for Pulse Plating. Journal of the Electrochemical Society, 136 (1989) 2850-2855.
    [41] Agrawal, P. M., Rice, B. M., and Thompson, D. L., Predicting trends in rate parameters for self-diffusion on FCC metal surfaces. Surface Science, 515 (2002) 21-35.
    [42] Kozlov, V. M. and Bicelli, L. P., Texture formation of electrodeposited fcc metals. Materials Chemistry and Physics, 77 (2002) 289-293.
    [43] Devaraj, G., Guruviah, S., and Seshadri, S. K., PULSE PLATING. Materials Chemistry and Physics, 25 (1990) 439-461.
    [44] Wilke, C. R. and Chang, P., Correlation of diffusion coefficients in dilute solutions. AIChE Journal, 1 (1955) 264-270.
    [45] Datta, M. and Landolt, D., Experimental investigation of mass transport in pulse plating. Surface Technology, 25 (1985) 97-110.
    [46] Lovette, M. A. and Doherty, M. F., Reinterpreting edge energies calculated from crystal growth experiments. Journal of Crystal Growth, 327 (2011) 117-126.
    [47] Anderoglu, O., Misra, A., Ronning, F., Wang, H., and Zhang, X., Significant enhancement of the strength-to-resistivity ratio by nanotwins in epitaxial Cu films. Journal of Applied Physics, 106 (2009) 024313.
    [48] Chen, J., Lu, L., and Lu, K., Hardness and strain rate sensitivity of nanocrystalline Cu. Scripta Materialia, 54 (2006) 1913-1918.
    [49] Youngdahl, C. J., Sanders, P. G., Eastman, J. A., and Weertman, J. R., Compressive yield strengths of nanocrystalline Cu and Pd. Scripta Materialia, 37 (1997) 809-813.
    [50] Vanswygenhoven, H. V. and Weertman, J. R., Deformation in nanocrystalline metals. Materials Today, 9 (2006) 24-31.
    [51] Sanders, P. G., Eastman, J. A., and Weertman, J. R., Elastic and tensile behavior of nanocrystalline copper and palladium. Acta Materialia, 45 (1997).
    [52] Anderoglu, O., Misra, A., Wang, H., and Zhang, X., Thermal stability of sputtered Cu films with nanoscale growth twins. Journal of Applied Physics, 103 (2008) 094322.
    [53] Anderoglu, O., Misra, A., Wang, H., Ronning, F., Hundley, M. F., and Zhang, X., Epitaxial nanotwinned Cu films with high strength and high conductivity. Applied Physics Letters, 93 (2008) 083108.
    [54] Shen, Y. F., Lu, L., Lu, Q. H., Jin, Z. H., and Lu, K., Tensile properties of copper with nano-scale twins. Scripta Materialia, 52 (2005) 989-994.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE