簡易檢索 / 詳目顯示

研究生: 邱奕世
Chiou, Yih-Shyh
論文名稱: 適應性室內無線區域網路定位技術
Adaptive Location Estimation Techniques for Indoor Wireless Local Area Networks
指導教授: 王晉良
Wang, Chin-Liang
口試委員:
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 134
中文關鍵詞: 位置追蹤定位技術電波傳遞模型法卡爾曼濾波α-β濾波貝式濾波因式圖形和積演算法
外文關鍵詞: Location Tracking, Location-Estimation Techniques, Radio Propagation Modeling, Kalman Filtering, Alpha-Beta Filtering, Bayesian Filtering, Factor Graphs, Sum-Product Algorithm
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要
    隨著無線通訊的快速發展,使得以定位與追踪演算法為基礎的定位技術在室內環境的監督、導引、避開障礙等等的適地性型服務(LBS,location-based service)博得青睞。戶外環境對移動端(MT, mobile terminal)定位的方法通常是以全球定位系統(GPS,global positioning system)為基礎的定位系統或是以蜂巢式網路系統(cellular network system)為基礎的定位系統,然而仍會因為這些系統或方法在室內定位的準確度不足而無法將其運用在室內的環境。對室內的定位而言,基本上有兩大挑戰:一個是定位的準確度,另一個是定位的運算複雜度。為達到更好的適地性型服務,在室內環境發展更好定位準確度與(或)更低運算複雜度的定位技術是必須的。
    在本論文中,我們探討如何提高定位準確度的不同定位方法。在室內無線區域網路(WLAN, wireless local area network)的系統下,我們所提出的適應性演算法是以電波傳遞模型(RPM,radio propagation modeling)、卡爾曼濾波(KF, Kalman filtering)以及射頻識別(RFID, radio-frequency identification)輔助為基礎。在RPM的定位方法中我們採用一些特定多項式函數迴歸法(Polyfit, polynomial fitting functions)得到移動端的定位結果,與訊號紋定位法(FP, fingerprinting )的結果相比較,RPM的定位方法可以減少訓練的資料點數量。因為使用FP與RPM的定位方法會造成有些估測位置不合理的情形,所以我們使用KF演算法減緩不合理的估測結果以提高定位的準確度,其中KF追蹤法所需的觀測資料(也就是移動端的位置資料)可以藉由FP或RPM的定位法取得。為了進一步提高定位的準確度,我們還利用移動端的速度資訊發展成擴展型卡爾曼濾波(EKF, estanded KF)追蹤法,在此方法中移動端的估測位置是透過等速的軌跡和電波傳遞模型的計算得到。在沒有藉由RPM的定位方法取得觀測位置的資訊的情況下,EKF演算法的複雜度較KF演算法低。與FP的定位方法相比較,KF及EKF的追蹤方法可以減緩訊號紋定位法在訊號空間量測所產生的 aliasing現象(誤解信號量測與位置關係的現象)。除此之外,為了修正KF演算法在轉角定位不夠準確的情形,我們採用RFID輔助的方法提高定位的準確度;使用RFID為輔助的KF追蹤方法同時具有校準估測位置的特性以及修正轉角效應的好處。實驗的結果顯示,在額外硬體的需求下,以RFID為輔助的KF的定位技術能夠達到相當好的定位準確度。
    以KF觀念為基礎的定位技術往往需要較高的運算複雜度,運算複雜度過高的方法並不適合直接應用到實際的定位系統之中,所以我們也發展兩種有效降低追蹤演算法的運算複雜度的方法。因為α-β (Alpha-Beta)的追蹤方法可歸結為一個簡化形式的KF追蹤方法,所以首先我們使用α-β的演算法取代KF演算法的決定模式(decision mode)以避免重複計算卡爾曼增益(Kalman gain),而且α-β的演算法不像KF演算法需要提供狀態雜訊以及測量(觀測)雜訊的參數資訊。模擬的結果顯示,在穩定的環境下,我們所提出的α-β追踪方法的效能非常接近KF追踪方法的效能,所以α-β的追蹤方法不但具有不錯的定位準確度,而且能夠有效降低運算複雜度。然而α-β追蹤方法是以固定係數濾波法為基礎,所以不夠靈活。為了避免這種情況的缺點,我們以Bayesian 濾波法為基礎,藉由前進式的因式圖形(FG, factor graphs)演算法來取代KF演算法的運算複雜度。FG的演算法是根據變數點(variable node)與因式點(factor node)之間傳遞可靠資料,這種固有的資訊傳遞性質對位置的追踪有很大的助益。與KF追蹤法相比較,我們所提出的FG方法,在可與KF追蹤法演算法相媲美的準確度下,FG運算複雜度遠低於KF追蹤法的運算複雜度。我們所提出的FG追踪方法具有定位準確度和較低的運算複雜度的兩個良好特性,對室內無線區域網路的應用而言,具有相當的吸引力。


    Abstract
    With the rapid progress in wireless communications, location estimation techniques, including positioning and tracking algorithms, have received a great deal of attention for location-based services (LBSs) in indoor environments, such as surveillance, guidance, obstacle avoidance, etc. The common methods of determining a location of mobile terminal (MT) in outdoor environments are using the global positioning system or cellular networks. However, such approaches usually could not provide enough location accuracy for indoor applications. Basically, there are two major challenging issues in indoor location estimation; one is the location accuracy, and the other is the computational complexity. To have better indoor LBSs, it is necessary to develop indoor location estimation techniques with good location accuracy and/or low computational complexity.
    In this dissertation, we investigate how to improve the location accuracy of different location estimation schemes. We present adaptive algorithms based on radio propagation modeling (RPM), Kalman filtering (KF), and radio-frequency identification (RFID) assistance for indoor wireless local area networks (WLANs). In the RPM scheme, we use some specific polynomial fitting functions to determine the location of an MT, which can reduce the number of training data points in comparison with the fingerprinting (FP) method. To improve the location accuracy, we then use the KF algorithm to smooth the location estimation results obtained from the FP and the proposed RPM method. To enhance the location accuracy further, we also use the velocity information of an MT to develop an extended KF (EKF) tracking scheme. In this scheme, the estimated location of an MT is calculated from the constant-speed trajectory and the radio propagation model. Without using the RPM method to obtain the location information, the complexity of the EKF scheme is less than that of the KF scheme. As compared to the FP scheme, both the KF and EKF tracking schemes can alleviate the problem of aliasing, which is the phenomenon of misinterpretation of signal measurements. Furthermore, to overcome the inaccuracy problem around corners, RFID is applied to assist the KF tracking algorithm. The RFID-assisted KF tracking scheme can calibrate the location estimation results and correct the corner effects. Experimental results show that it can achieve excellent location accuracy at the expense of high computational complexity.
    To reduce the computational complexity of the KF tracking algorithm, we develop two efficient methods for location tracking. First, we replace the decision mode of the KF tracking algorithm with an Alpha-Beta (α-β) algorithm, which is a degenerate form of the KF algorithm, to avoid repeatedly calculating the Kalman gain. With α-β tracking, the exact information of the state and measurement noise parameters used in the KF algorithm is not required. Simulation results show that the performance of the α-β tracking method is close to that of the KF algorithm under a stationary environment. Nevertheless, the α-β tracking scheme is based on a fixed-coefficient filtering, so it is not flexible enough. To avoid this disadvantage, we use a forward factor graph (FG) algorithm, instead of the KF algorithm, to simplify the implementation of Bayesian filtering. The FG algorithm is based on passing the data reliability information between the variable nodes and the factor nodes, and this inherent message-passing nature is helpful to location tracking. As compared to the KF tracking scheme, the proposed FG approach achieves close location accuracy with much lower computational complexity. With both features of good location accuracy and low computational complexity, the proposed FG tacking scheme is attractive for use in indoor WLAN applications.

    Contents Abstract i Contents iii List of Figures vii List of Tables xiii Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Organization 7 Chapter 2 Location Estimation Schemes without Tracking Capabilities 9 2.1 SNR-Based Location Estimation Using Fingerprinting 9 2.2 SNR-Based Location Estimation Using Radio Propagation Modeling 12 2.2.1 Related Works 12 2.2.2 Radio Propagation Modeling 13 2.3 Simulation Results 17 2.4 Experiment Setup 19 2.5 Experimental Results 22 2.6 Radio Propagation Modeling Equations 27 2.7 Summary 28 Chapter 3 Location Estimation Schemes with Tracking Capabilities 31 3.1 Bayes' Theorem and Inference 31 3.1.1 Representation of Dynamic Systems 31 3.1.2 Bayesian Filtering 33 3.1.3 Kalman Filtering 34 3.1.4 Extended Kalman Filtering 39 3.2 Location Estimation Using Kalman Filtering 42 3.2.1 State and Linear Measurement Models 43 3.2.2 Location Estimation Using KF Tracking with an RFID-Assisted Scheme 44 3.2.2.1 Problem Formulation 44 3.2.2.2 Design Procedure 45 3.2.2.3 A Layout Planning Scheme of WLAN APs and RFID Tags 46 3.2.3 Simulation Results of the Proposed KF-Based Scheme 47 3.3 SNR-Based Location Estimation Using Extended Kalman Filtering 50 3.3.1 State and Nonlinear Measurement Models 51 3.3.2 Simulation Results of the Proposed EKF-Based Scheme 52 3.4 Experimental Results 55 3.4.1 Location Estimation Using the Proposed KF-Based Scheme 55 3.4.2 Location Estimation Using the Proposed EKF-Based Scheme 61 3.5 Summary 63 Chapter 4 Reduced-Complexity Location Tracking Algorithms 65 4.1 Location Tracking Using Alpha-Beta Filtering 65 4.1.1 Background 66 4.1.2 The Alpha-Beta Tracking Scheme 69 4.1.3 Simulation Results of the Alpha-Beta Tracking Scheme 73 4.2 Location Tracking Using Factor Graphs 77 4.2.1 Factor Graphs 77 4.2.2 The Proposed FG-Based Tracking Scheme 84 4.2.3 Simulation Results of the Proposed FG-Based Tracking Scheme 93 4.3 Summary 97 Chapter 5 Conclusions 99 Appendix A Location Estimation Using Neural Networks 103 Appendix B An Adaptive Location Estimator Based on Alpha-Beta Filtering for Wireless Sensor Networks 105 Appendix C Performance of Location Estimation Techniques 119 Bibliography 123 Publication List 133

    Bibliography
    [1] K. Pahlavan, X. Li, and J. P. Makela, “Indoor geolocation science and technology,” IEEE Commun. Mag., vol. 40, pp. 112-118, Feb. 2002.
    [2] I. K. Adusei, K. Kyamakya, and K. Jobmann, “Mobile positioning technologies in cellular networks: an evaluation of their performance metrics,” in Proc. 2002 IEEE Military Communications Conference ( MILCOM 2002), vol. 2, Oct. 2002, pp.1239-1244.
    [3] Enhanced 911-wireless services. Available: http://www.fcc.gov/pshs/services/911-services/ enhanced911/Welcome.html.
    [4] Y.-C. Chen, J.-R. Chiang, H.-H. Chu, P. Huang, and A. W. Tsui, “Sensor-assisted Wi-Fi indoor location system for adapting to environmental dynamics,” in Proc. 2005 ACM/IEEE International Workshop on Modeling Analysis and Simulation of Wireless and Mobile Systems (MSWiM 2005), Oct. 2005, pp.118-125.
    [5] H. Lim, L.-C. Kung, J. C. Hou, and H. Luo, “Zero-configuration, robust indoor localization: Theory and experimentation,” in Proc. 2006 IEEE Conference on Computer Communications ( INFOCOM 2006), Apr. 2006, pp.1-12.
    [6] P. Tao, A. Rudys, A. M. Ladd, and D. S. Wallach, “Wireless LAN location-sensing for security applications,” in Proc. 2003 ACM Workshop on Wireless Security (WISE 2003), Sep. 2003, pp.11-20.
    [7] P. Bahl, V. N. Padmanabhan, and A. Balachandran, “Enhancements to the RADAR user location and tracking system,” Technical Report. MSR-TR-200-12, Microsoft Research, Feb. 2000.
    [8] A. Hills, J. Schlegel, and B. Jenkins, “Object tracking through RSSI measurements in wireless sensor networks,” IEE Electr. Lett., vol. 44, pp. 653-654, May 2008.
    [9] J. Ding, S.-Y. Cheung, C.-W. Tan, and P. Varaiya, “Signal processing of sensor node data for Vehicle detection,” in Proc. 2004 IEEE International Conference on Intelligent Transportation Systems, (ITSC 2004), Oct. 2004, pp. 70-75.
    [10] M. J. Hossain, O. Chae, Md. Mamun-Or-Rashid, and C. S. Hong, “Cost-effective maximum lifetime routing protocol for wireless sensor networks,” in Proc. 2005 IEEE Advanced Industrial Conference on Telecommunications/Service Assurance with Partial and Intermittent Resources Conference/E-Learning on Telecommunications Workshop (AICT/SAPIR/ELETE 2005), Jul. 2005, pp. 314-319.
    [11] X. Tang and J. Xu, “Adaptive data collection strategies for lifetime-constrained wireless sensor networks,” IEEE Trans. Parallel Distrib. Syst., vol. 9, no. 6, pp. 721-734, Jun. 2008.
    [12] P. Bahl and V. N. Padmanabhan, “RADAR: An in-building RF-based user location and tracking system,” in Proc. 2000 IEEE Conference on Computer Communications ( INFOCOM 2000),, vol. 2, Mar. 2000, pp. 775-784.
    [13] C.-L. Wang, Y.-S. Chiou, and S.-C. Yeh, “An indoor location scheme based on wireless local area networks,” in Proc. 2005 IEEE Consumer Communications and Networking Conference ( CCNC 2005), Jan. 2005, pp. 602-604.
    [14] K. Kaemarungsi and P. Krishnamurthy, “Modeling of indoor positioning systems based on location fingerprinting,” in Proc. 2004 IEEE Conference on Computer Communications ( INFOCOM 2004), vol. 2, Mar. 2004, pp.1012-1022.
    [15] P. Prasithsangaree, P. Krishnamurthy and P. K. Chrysanthis, “On indoor position location with wireless LANs,” in Proc. 2002 IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC 2002), vol. 2, Sep. 2002, pp. 720-724.
    [16] P. Krishnan, A. S. Krishnakumar, W. H. Ju, C. Mallows, and S. Ganu, “A system for LEASE: Location estimation assisted by stationary emitters for indoor RF wireless networks,” in Proc. 2004 IEEE Conference on Computer Communications ( INFOCOM 2004), vol. 2, Mar. 2004, pp.1001-1011.
    [17] Ekahau positioning engine. Available: http://www.ekahau.com.
    [18] C.-L. Wang, Y.-S. Chiou, and S.-C. Yeh, “A location algorithm based on radio propagation modeling for indoor wireless local area networks,” in Proc. 2005 IEEE Vehicular Technology Conference - Spring ( VTC2005-Spring), vol. 5, May/Jun. 2005, pp. 2830-2834.
    [19] C.-L. Wang and Y.-S. Chiou, “An adaptive positioning scheme based on radio propagation modeling for indoor WLANs,” in Proc. 2006 IEEE Vehicular Technology Conference - Spring ( VTC2006-Spring), vol. 6, May 2006, pp. 2676-2680.
    [20] J. Yin, Q. Yang, and L. M. Ni, “Learning adaptive temporal radio maps for signal-strength-based location estimation,” IEEE Trans. Mobile Comput., vol. 7, no. 7, pp. 869-883, July. 2008.
    [21] L.-W. Yeh, M.-S. Hsu, Y.-F. Lee, and Y.-C. Tseng, "Indoor localization: Automatically constructing today's radio map by iRobot and RFIDs", in Proc. 2009 IEEE Conference on Sensors (SC2009), Oct. 2009, pp. 1463-1466.
    [22] L. M. Ni, Y. Liu, Y. C. Lau, and A. P. Patil, “LANDMARC: indoor location sensing using active RFID,” in Proc.2003 IEEE Conference on Pervasive Computing and Communications (PerCom 2003), Mar. 2003, pp. 407-415.
    [23] G.-Y. Jin, X.-Y. Lu, and M.-S. Park, “An indoor localization mechanism using active RFID tag,” in Proc. 2006 IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing (SUTC 2006), vol. 1, Jun. 2006.
    [24] A. Teuber, B. Eissfeller, and T. A. Pany, “A two-stage fuzzy logic approach for wireless LAN indoor positioning,” in Proc. 2006 IEEE/ION Position Location and Navigation Symposium (PLANS 2006), Apr. 2006, pp. 730-738.
    [25] A. Teuber, and B. Eissfeller, “WLAN indoor positioning based on Euclidean distances and fuzzy logic,” in Proc. 2006 IEEE Workshop on Positioning, Navigation and Communication (WPNC 2006), Mar. 2006, pp. 159-168.
    [26] B.-F. Wu, C.-L. Jen, and K.-C. Chang, “Neural fuzzy based indoor localization by Kalman filtering with propagation channel modeling,” in Proc. 2007 IEEE International Symposium on Intelligent Control (ISIC 2007), Oct. 2007, pp. 812-817.
    [27] R. Szumny and J. Modelski, “Neural networks in indoor positioning system based on power delay profile”, in Proc. 2005 IEEE International Conference on Computer as a Tool (EUROCON 2005), Nov. 2005, pp. 1726-1729.
    [28] R. Battiti, T. L. Nhat, and A. Villani, “Location-aware computing: a neural network model for determining location in wireless LANs”, Technical Report DIT-02-0083, Feb. 2002.
    [29] R. Szumny and J. Modelski, “Neural networks for fingerprinting-based indoor localization using ultra-wideband,” Journal of Commun., vol. 4, no. 4, pp. 267-275, May 2009.
    [30] R. K. K, Y. A Powar, and V. Apte, “Improving the accuracy of wireless LAN based location determination systems using Kalman filter and multiple observers,” in Proc. 2006 IEEE Wireless Communications and Networking Conference (WCNC 2006), vol. 1, Apr. 2006, pp. 463-468.
    [31] B. L. Le, K. Ahmed, and H. Tsuji, “Mobile location estimator with NLOS mitigation using Kalman filtering,” in Proc. 2003 IEEE Wireless Communications and Networking Conference (WCNC 2003), vol. 3, Mar. 2003, pp. 1969-1973.
    [32] I. Guvenc, C. T. Abdallah, R. Jordan, and O. Dedeoglu, “Enhancements to RSS based indoor tracking systems using Kalman filters,” in Proc. 2003 Global Signal Processing Expo (GSPx) and International Signal Processing Conference (ISPC), Mar./Apr. 2003.
    [33] H. Qasem and L. Reindl, “Unscented and extended Kalman estimators for non linear indoor tracking using distance measurements,” in Proc. 2007 IEEE Workshop on Positioning, Navigation and Communication (WPNC 2007), Mar. 2007, pp. 177-181.
    [34] J. Yim, C. Park, J. Joo, and S. Jeong, “Extended Kalman filter for wireless LAN based indoor positioning,” Decision Support Syst., vol. 45, no. 4, pp. 960-971, Nov. 2008.
    [35] E. Stansfield, “Kalman filter tutorial”, in Proc. ASPCM, Mar. 2001.
    [36] E. Brookner, Tracking and Kalman Filtering Made Easy, New York: John Wiley & Sons, 1998.
    [37] I. Rhee, M. F. Abdel-Hafez, and J. L. Speyer, “Fixed-lag alpha-beta filter for target trajectory,” IEEE Trans. Aerosp. Electro. Syst., vol. 40, No. 4, pp. 1417-1421, Oct. 2004.
    [38] R. J. Fitzgerald, “Simple tracking filters: Closed-form solutions,” IEEE Trans. Aerosp. Electro. Syst., vol. 17, No. 6, pp. 781-785, Nov. 1981.
    [39] P. R. Kalata, “The tracking index: A genaralized parameter for α-β and α-β-γ target trackers,” IEEE Trans. Aerosp. Electro. Syst., vol. AES-20, No. 2, pp. 174-182, Mar. 1984.
    [40] C.-L. Wang, Y.-S. Chiou, and Y.-S. Dai, “An adaptive location estimator based on Alpha-Beta filtering for wireless sensor networks,” in Proc. 2007 IEEE Wireless Communications and Networking Conference (WCNC 2007), Mar. 2007, pp. 3285-3290.
    [41] Y.-S. Chiou, C.-L. Wang, and S.-C. Yeh “An adaptive location estimator using tracking algorithms for indoor WLANs,” ACM/Springer Wireless Netw., published online: Mar. 2010.
    [42] F. R. Kschischang, B. J. Frey, and H. A. Loeliger, “Factor graphs and the sum-product algorithm,” IEEE Trans. Inf. Theory, vol. 47, pp. 498-519, Feb. 2001.
    [43] H. A. Loeliger, “An introduction to factor graphs,” IEEE Signal Process. Mag., vol. 21, pp. 28-41, Jan. 2004.
    [44] H. A. Loeliger, J. Dauwels, H. Junli, S. Korl, L. Ping, and F.R. Kschischang, “The factor graph approach to model-based signal processing,” Proc. IEEE, vol. 95, no. 6, pp. 1295–1322, Jun. 2007.
    [45] C.-T. Huang, C.-H. Wu, Y.-N. Lee, and J.-T. Chen, “A novel indoor RSS-based position location algorithm using factor graphs,” IEEE Trans. Wireless Commun., vol. 8, no. 6, pp. 3050-3058, Jun., 2009.
    [46] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on particle filters for nonlinear/non-Gaussian Bayesian tracking,” IEEE Trans. Signal Process., vol. 50, pp. 174–188, Feb. 2002.
    [47] O. Cappé, S. J. Godsill and E. Moulines, “An overview of existing methods and recent advances in sequential Monte Carlo,” Proc. IEEE, vol. 95, no. 5, pp. 899–924, May 2007.
    [48] D. Fox, J. Hightower, L. Liao, D. Schulz, and G. Borriello, “Bayesian filtering for location estimation,” IEEE Pervasive Comput., vol. 2, no. 3, pp. 24–33, Sep. 2003.
    [49] P. Vorst, J. Sommer, C. Hoene, P. Schneider, C. Weiss, T. Schairer, W. Rosenstiel, A. Zell, and G. Carle,. “Indoor positioning via three different RF technologies,” in Proc. 2008 European Workshop on RFID Systems and Technologies (RFID SysTech 2008), Jun. 2008.
    [50] S. Y. Seidel and T. S. Rappaport, “914 MHz path loss prediction models for indoor wireless communications in multifloored buildings,” IEEE Trans. Antennas Propagat., vol. 40, no. 2, pp. 207-217, Feb. 1992.
    [51] S. R. Saunders, Antennas and Propagation for Wireless Communication Systems, Chichester: John Wiley & Sons, 1999.
    [52] T. S. Rappaport, Wireless Communications: Principles and Practice, New Jersey: Prentice Hall PTR, 2002.
    [53] K. Kaemarungsi and P. Krishnamurthy, “Properties of indoor received signal strength for WLAN location fingerprinting,” in Proc. 2004 IEEE International Conference on Mobile and Ubiquitous Systems: Networking and Services ( MOBIQ 2004), Aug. 2004, pp. 14-23.
    [54] Y.-S. Chiou, C.-L. Wang, and S.-C. Yeh, “An adaptive location estimator based on Kalman filtering for dynamic indoor environments,” in Proc. 2006 IEEE Vehicular Technology Conference - Fall ( VTC2006-Fall), Sept. 2006, pp. 1-5.
    [55] T. P. Deasy and W. G. Scanlone, “Simulation or measurement: The effect of radio map creation on indoor WLAN-Based localisation accuracy,” Springer Wireless Pers. Commun., vol. 42, no. 4, pp. 563-573, Oct. 2006.
    [56] J. Small, A. Smailagic, and D. P. Siewiorek, “Determining user location for context aware computing through the use of a wireless LAN infrastructure.” Available: http://www.cs.cmu.edu/~aura/docdir/small00.pdf.
    [57] Y.-S. Chiou, C.-L. Wang, S.-C. Yeh, and M.-Y. Su, “Design of an adaptive positioning system based on WiFi radio signals,” Elsevier Computer Commun., vol.32, pp. 1245-1254, May 2009.
    [58] W. L. Stutzman and G. A. Thiele, Antenna Theory and Design, New York: John Wiley & Sons, 1998.
    [59] A. Hills, J. Schlegel, and B. Jenkins, “Estimating signal strengths in the design of an indoor wireless network,” IEEE Trans. Wireless Commun., vol. 3, pp. 17-19, Jan. 2004.
    [60] C. M. Bishop, Pattern Recognition and Machine Learning, Cambridge: Springer, 2006
    [61] B. Ristic, S. Arulampalam, and N. Gordon, Beyond the Kalman Filter: Particle Filters for Tracking Applications, Boston: Artech House, 2004.
    [62] J. M. Mendel, Lessons in Estimation Theory for Signal Processing, Communication, and Control, New Jersey: Prentice Hall PTR, 1995.
    [63] M. S. Grewal and A. P. Andrews, Kalman Filtering: Theory and Practice Using Matlab, New York: John Wiley & Son, 2001.
    [64] T. K. Mood and W. C. Stirling, Mathematical Methods and Algorithms for Signal Processing, New Jersey: Prentice Hall PTR, 2000.
    [65] S. Haykin, Adaptive Filter Theory, New Jersey: Prentice Hall PTR, 2002.
    [66] D.-B. Lin, M.-C. Jan, R.-S. Hsiao, and H.-P. Lin, “Corrected signal attenuation difference of arrival for wireless location technique,” in Proc. 2010 IEEE VTS Asia Pacific Wireless Communications Symposium (VTS APWCS2010), May 2010.
    [67] D. C. Brogan and N. L. Johnson, “Realistic human walking Paths,” in Proc. 2003 IEEE International Conference on Computer Animation and Social Agents (CASA 2003), vol. 5, pp. 94-101, May 2003.
    [68] S.-P. Kuo, B.-J. Wu, W.-C. Peng, and Y.-C. Tseng, “Cluster-enhanced techniques for pattern-matching localization systems”, in Proc. 2007 IEEE International Conference on Mobile Ad-hoc and Sensor Systems (MASS 2007), Oct. 2007, pp. 1020-1023.
    [69] P. Bellavista, A. Kupper, S. Hela, “Location-based services: Back to the future,” IEEE Pervasive Comput., vol. 7, no. 2, pp. 85–89, 2008.
    [70] S. J. Vaughan-Nichols, “Will mobile computing’s future be location, location, location?,” IEEE Comput. Mag., vol. 42, no. 2, pp. 14–17, 2009.
    [71] R. J. Barton, R. Zheng, S. Gezici, and V. V. Veeravalli, “Signal processing for location estimation and tracking in wireless environments,” EURASIP Journal on Advances in Signal Process., vol. 2008, pp. 1–3, 2008.
    [72] T. S. Rappaport, J. H. Reed, and B. D. Woerner, “Position location using wireless communications on highways of the future,” IEEE Commun. Mag., vol. 34, no. 10, pp. 33–41, 1996.
    [73] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey on sensor networks,” IEEE Commun. Mag., vol. 40, pp. 102-114, Aug. 2002.
    [74] N. Patwari, J.N. Ash, S. Kyperountas, Hero AO III, R.L. Moses, and N.S. Correal, “Locating the nodes: Cooperative localization in wireless sensor networks,” IEEE Signal Process. Mag., vol. 22, pp. 54-69, July 2005.
    [75] V. Shnayder, M. Hempstead, B. Rong Chen, G.W. Allen, and M. Welsh, “Simulating the power consumption of large-scale sensor network applications,” in Proc. 2004 ACM Conference on Embedded Networked Sensor Systems (SenSys 2004), Nov. 2004, pp. 188-200.
    [76] M. G. Rabbat and R. D. Nowak, “Decentralized source localization and tracking,” in Proc. 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2004), vol. 3, May 2004, pp. 921–924.
    [77] J.-P. Sheu, W.-K. Hu, and J.-C. Lin, "Distributed Localization Scheme for Mobile Sensor Networks," IEEE Trans. Mobile Comput., vol. 9, no. 4, pp. 516-526, Apr. 2010.
    [78] J.-P. Sheu, P.-C. Chen, and C.-S. Hsu, “A distributed localization scheme for wireless sensor networks with improved grid-scan and vector-based refinement,” IEEE Trans. Mobile Comput., vol. 7, no.9, pp. 1110 -1123, Sep. 2008
    [79] S.-P. Kuo, H.-J. Kuo, and Y.-C. Tseng, "The beacon movement detection problem in wireless sensor networks for localization applications", IEEE Trans. Mobile Comput., vol. 8, no. 10, pp. 1326-1338, Oct. 2009.
    [80] C.-L. Wang, Y.-W. Hong, and Y.-S. Dai, “A decentralized positioning method for wireless sensor networks based on weighted interpolation,” in Proc. 2007 IEEE International Conference on Communications (ICC 2007), vol. 5, Jun. 2007, pp. 3167-3172.
    [81] C.-L. Wang, Y.-S. Chiou, and Y.-S. Dai, “An adaptive location estimator based on Kalman filtering for wireless sensor networks,” in Proc. 2007 IEEE Vehicular Technology Conference - Spring ( VTC2007-Spring), Apr. 2007.
    [82] C.-L. Wang, Y.-S. Chiou, and Y.-S. Dai, “An adaptive location estimator based on Alpha-Beta filtering for wireless sensor networks,” in Proc. 2007 IEEE Wireless Communications and Networking Conference (WCNC 2007), Mar. 2007.
    [83] S. Singhal and L.Wu, “Training multilayer perceptions with the extended Kalman algorithm,” Advances in Neural Information Processing Systems 1, San Francisco: Morgan Kaufmann Publishers Inc., 1989.
    [84] K. Yamasaki and H. Ogawa, “A theory of over-learning in the presence of noise”, in Proc. ’93 IEEE International Conference on Neural Networks (ICNN ’93), vol. 1, Mar./Apr. 1993, pp. 485-488.
    [85] A. O. Hero and D. Blatt, “Sensor network source localization via projection onto convex sets (POCS),” in Proc. 2005 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2005), vol. 5, Mar. 2005, pp. 1065-1068.
    [86] N. Patwari, I. Alfred O. Hero, M. Perkins, N. S. Correal, and R. J. O’Dea, “Relative location estimation in wireless sensor networks,” IEEE Trans. Signal Processing, vol. 51, pp. 2137-2148, Aug. 2003.
    [87] S. Phaiboon, “An empirically based path loss model for indoor wireless channels in laboratory building,” in Proc. 2002 IEEE Region 10 Conference (TENCON 2002), vol. 2, Oct. 2002, pp. 1020 – 1023.
    [88] G. L. Stuber, Principles of Mobile Communication, Norwell, MA: Kluwer, 1998.
    [89] Libert, J.C., Rappaport, T.S, “Statistics of shasowing in indoor radio channels at 900 and 1900 MHz”, in Proc. ’92 IEEE Page Help Military Communications Conference (MILCOM ’92), vol. 3, Otc. 1992, pp. 1060-1070.
    [90] K.-J. Yang and Y.-R. Tsai, “Location tracking in mobile networks under correlated shadowing effects,” in Proc. 2009 IEEE Wireless Communications and Networking Conference (WCNC 2009), Apr. 2009, pp. 1-5.
    [91] C.-C. Yang, C.-E. Weng, J.-M. Zhang, J.-K. Lain, and J.-H. Wen, “A modified energy-efficient routing algorithm for wireless sensor networks,” in Proc. 2007 IEEE International Conference on Telecommunications & Malaysia International Conference on Communications (ICT-MICC 2007, May 2007, pp. 540-544.
    [92] C.-F. Tsai, C.-J. Chang, F.-C. Ren, and C.-M. Yen, “Adaptive radio resource allocation for downlink OFDMA/SDMA systems with multimedia traffic,” IEEE Trans. Wireless Commun., vol. 7, no. 5, pp. 1734-1743, May, 2008.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE