簡易檢索 / 詳目顯示

研究生: 許哲雄
Hsu, Che-Hsiung
論文名稱: 開發快速合成唾液酸多醣之方法與製備唾液酸多醣晶片用於研究流感病毒表面抗原血液凝集素
Development of Efficient Sialylation Reaction and Preparation of Sialoside Arrays for the Study of Influenza Hemagglutinin-Receptor Interaction
指導教授: 翁啟惠
Wong, Chi-Huey
吳宗益
Wu, Chung-Yi
口試委員: 翁啟惠
Wong, Chi-Huey
吳宗益
Wu, Chung-Yi
方俊民
呂平江
馬徹
洪上程
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 341
中文關鍵詞: 唾液酸醣合成流感病毒醣類有機合成
外文關鍵詞: sialic acid, influenza virus, hemagglutinin, carbohydrate synthesis, one-pot
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 唾液酸(sialic acids),一種存在於醣蛋白和醣脂末端的單醣分子,參與了非常多樣的生物功能,而由於表現在細胞表面的末端位置,這些唾液酸是許多侵略性的病毒和細菌與人體細胞結合的主要受體,而且這些唾液酸也調控了多種的生物功能藉由其與其他生物分子的作用。然而,合成含有唾液酸的多醣仍然是醣化學家的一大挑戰。最近有一個新的發明,利用含有環狀4,5-oxazolidinone保護基的唾液酸醣予體(glycosyl donor)可以有效改進合成唾液酸多醣的困難性。在這篇論文中,我們發展了一個新的含有環狀4,5-oxazolidinone保護基而且使用磷酸正二丁脂(di-n-butyl phosphate) 做為高活性離去基的唾液酸醣予體,我們首先證明使用新的磷酸離去基可以增加唾液酸單元的alpha選擇性,我們並且展示此種新的唾液酸單元可以高立體選擇性的合成最常見的五種唾液酸單元連結結構。就我們所知,這是第一個使用磷酸離去基且被證明可以用來有立體選擇性的合成唾液酸多醣的醣予體。
    流感病毒對人體的感染起始於其表面名為血液凝集素(hemagglutinin)的醣蛋白和細胞表面的唾液酸做結合,人的流感病毒會特別喜好與在呼吸道表皮細胞的□(2→6) 唾液酸多醣結合,而禽流感病毒會特別喜好與在禽類腸內部的表皮細胞表面的□(2→3) 唾液酸多醣結合。由於近幾年來醣晶片成為一個研究流感與受體結合的主流工具,我們建立了一個醣晶片,其中部分的醣即是使用上述的新合成方法來合成出。我們利用這個晶片來研究血液凝集素表面醣化程度與其和受體結合之影響,結果顯示減少了血液凝集素表面的醣分子會均一性的增加其對不同受體結合的能力,此外,我們使用一個直接在血液凝集素表面標定螢光基團Cy3的方法,可以用來幫助血液凝集素與受體之解離常數的測定。
    由於感染人的流感病毒對於較長的醣分子具有較好的結合能力,我們合成了N-乙醯乳醣胺的重覆結構,包含雙體,参體和其具有唾液酸多醣的雙體和三體來補足我們的醣晶片。在合成的過程中,發現含有亞碸(sulfoxide)離去基的醣予體是用來合成N-乙醯乳醣胺重覆結構的好方法,例如N-乙醯乳醣胺四體多醣可以再被氧化成相關的亞碸,然後在下一步合成玖醣的醣化反應中獲得很好的產率。而將這些N-乙醯乳醣胺多醣加入的醣晶片被用來研究多種類的流感病毒血液凝集素,其中包含兩千零九年流行之豬流感。另外這些N-乙醯乳醣胺多醣晶片分析顯示末端的醣化會抑制半乳醣凝集素和N-乙醯乳醣胺的結合,而(2→3)的影響會大於(2→6)。


    Sialic acid, which is terminal components of many glycoproteins and glycolipids, is involved in manifold cell functions. The terminally exposed position allows sialic acid-containing glycoconjugates to be exploited as receptors for many viruses and bacteria, in addition to governing a wide variety of biological processes. On the other hand, the synthesis of glycosides containing sialic acids remains a challenge for carbohydrate chemists. Rencently, a notable discovery of cyclic 5-N,4-O-oxazolidinone-protected thiosialoside donors has improved this awkward situation. In herein study, we developed a new chemical agent based on 5-N,4-O-oxazolidinone-protection, but equipped with a di-n-butyl phosphate as a reactive leaving group. We demonstrated that the conversion of sulfide-based leaving groups to phosphates has positive impact to the □-selectivity. Meanwhile, the donor showed the capability to stereoselective synthesize the five most common sialic acid linkages, NeuAc□(2→6)Gal, NeuAc□(2→3)Gal, NeuAc□(2→6)GalNAc, NeuAc□(2→8)NeuAc, and NeuAc□(2→9)NeuAc. To our knowledge, this is the first phosphate-based sialic acid donor that can be used for selective formation of □-glycosidic bond of sialic acid.
    Methodological improvements such as one-pot glycosylation and solid-phase oligosaccharide synthesis (SPOS) have been widely pursued to expditate processes for oligosaccharide syntheses. Although one-pot protocols available for sialoside syntheses are still rare, this 4,5-oxazolidinone-protected sialyl phosphate donors are applicable to two chief one-pot strategies, including (a) reativity-based programmable one-pot, and (b) orthogonal one-pot, with several sialosides were synthesized in high yields and high □-selectivity.
    he infection of influenza virus is initiated by attachment of the virus to cell-surface sialoside receptors via influenza surface glycoproteins, hemagglutinin (HA). Human-adapted virus HA preferentially bind to Neu5Ac□(2→6)Gal moieties on epithelial cell of the upper respiratory tract and avian-adapted virus HA preferentially bind to Neu5Ac□(2→3)Gal moieties of intestinal epithelial cells. Glycan microarrays have recently emerged as a powerful tool for studying receptor specificities of influenza HAs. In herein study, a sialoside array was created in which some glycans were prepared by using the new sialylation reaction. This array was employed to study the the role of influenza H5 HA glycosylation in the interactions between HA and its binding oligosaccharides. The glycan microarray analyses showed that trunction of the N-glycan structures on H5HA increased sialoside ligand binding affinities while decreasing specificity toward disparate ligands. We also developed a direct Cy3-labeling methodology of influenza HA, which allowed the calculation of surface dissociation constants by using glycan microarray
    Because human influenza viruses preferentially bind long oligosaccharide chain, we next synthesized N-acetyllactosamine dimer, trimer and their sialylated versions to complement our sialoside array. We found that the sulfoxide approach is efficient for the polymerization of N-acetyllactosamine chain. The octasaccharide synthesized via block synthesis can further undergo oxidation and subsequent glycosylation to give a nonasaccharide in good yield. These N-acetyllactosamine saccharides were included into the previous array, which was applied for studying the binding specificity of various HA subtypes including the 2009 swin-originated H1N1.
    In addition, we showed that the terminal sialylation inhibited the binding of human Galectin-3 to lactosamine oligosaccharide chain□□where□□(2→3) sialylation is more significant than □(2→6).

    論文摘要 ABSTRACT CONTENTS CONTENT OF FIGURES CONTENT OF TABLES Chapter 1. General Introduction 1 1.1 Biological Functions of Carbohydrates and Their Therapeutic Potential 1 1.2. Structural complexity of glycoconjugates 2 1.3. Synthesis of carbohydrates 3 1.4. Methodological improvements 4 1.5. Glycan microarray: a useful tool in glycobiology field 6 1.6. Outline 6 Chapter 2. A new 4,5-oxazolidinone-potected sialyl phosphate donor for the efficient preparation of natural sialosides 8 2.1. Structure, occurrence, and general functions of sialic acids 8 2.2. Chemical □-sialylation 12 2.3. 5-N,4-O-oxazolidinone-protected sialic acid donor 19 2.4. Results and discussion 21 2.4.1. 5-N,4-O-oxazolidinone-protected sialic acid donor 21 2.4.2. Effects of leaving groups, solvent systems, and C-5 structural modifications on the a-selectivity of 4,5-oxazolidinone-prote- cted sialyl phosphate donors 26 2.4.3. Development of sialosyl oligosaccharide building blocks con- taining the five most commonly found sialic acid linkages 30 2.4.3.1. □-Selective Synthesis of Neu5Ac□(2→6)Gal 30 2.4.3.2. □-Selective Synthesis of Neu5Ac□(2→3)Gal 32 2.4.3.3. □-Selective Synthesis of Neu5Ac□(2→6)GalNAc 33 2.4.3.4. □-Selective Synthesis of Neu5Ac□(2→8)Neu5Ac and Neu5Ac□(2→9)Neu5Ac 35 2.4.3. Synthesis of □(2→9)-tetrasialoside 36 2.4. Experimental section 39 Chapter 3. Applications of 4,5-oxazolidinone-protected sialyl phosphate donor to the programmable one-pot and orthogonal one-pot glycosylation 3.1. One-pot glycosylation 62 3.2. Programmable one-pot glycosylation 63 3.3.One-pot glycosylation involving sialylation reactions 65 3.3.1. Orthogonal one-pot type 65 3.3.2. Programmable one-pot type 68 3.4. Results and discussion 71 3.4.1. Programmable one-pot synthesis using □(2→3) sialylated disaccharide 17 71 3.4.2. A completely stereoselective one-pot approach 72 3.4.3. One-pot synthesis of disaccharide 32 77 3.5. Experimental section 78 Chapter 4. Preparation of sialoside arrays and their applications for the study of influenza hemagglutinin-receptor interactions 94 4.1. Introduction 94 4.2. Influenza virus: the structure 94 4.3. Nomenclature for influenza viruses 95 4.4. Influenza virus: the diseases 96 4.5. Influenza virus hemagglutinin and its glycosylation 98 4.6. Receptor specificity of the influenza virus 99 4.7. Results and discussion 100 4.7.1. Syntheses of sialoside array 101 4.7.2. Determination of KD,surf for influenza hemagglutinin- receptor interactions using glycan microarray: a direct measurement by using Cy3-labeled hemagglutinin 109 4.7.2.1. Development of a quantitative glycan array method 110 4.7.2.2. Preparation of Cy3-labeled HAs for glycan microarray analysis 112 4.7.2.3. Application of different Cy3-labeled H5 glycoforms for studying the effect of H5 glycosylation on its receptor binding specificity 115 4.7.2.4. Defined H5HA glycoforms for glycan array profiling 116 4.8. Experimental section 120 Chapter 5. Efficient syntheses of N-acetyllactosamine oligomers for use to study human influenza hemagglutinins and human Galectin-3 144 5.1. Long □(2→6) sialylated glycans as potent human HAs ligands 144 5.2. Result and discussion 145 5.2.1. Syntheses of N-acetyllactosamine oligomers 145 5.2.2. Differential receptor binding specficity of seasonal and pandemic human influenza HAs by a subset of receptor sialosides 156 5.2.3. Glycan microarray analysis revealed the inhibitory role of terminal sialylation toward human Galectin-3 binding 157 5.3. Experimental section 160 REFERENCES 193 APPENDIX (1H & 13C NMR spectrums) 200

    - 193 -
    References:
    [1] A. Varki, D. C. Cummings, J. D. Esko, H. H. Freeze, P. Stanley, C. R. Bertozzi, G. W. Hart, M. E. Etzler, Essentials of glycobiology, 2nd ed., Cold Spring Harbor, New York, 2009.
    [2] M. Petitou, C. A. A. van Boeckel, Angew. Chem. Int. Ed. 2004, 43, 3118-3133.
    [3] R. A. Pon, H. J. Jennings, in Carbohydrate-Based Vaccines and Immunotherapies (Eds.: Z. Guo, G. J. Boons), John Wiley & Sons, Hoboken, N.J., 2009, pp. 117-166.
    [4] T. Buskas, P. Thompson, G. J. Boons, Chem. Commun. 2009, 5335-5349.
    [5] a)I. Carlescu, D. Scutaru, M. Popa, C. V. Uglea, Med. Chem. Res. 2009, 18, 477-494; b)M. Matrosovich, H. D. Klenk, Rev. Med. Virol. 2003, 13, 85-97.
    [6] a)E. E. Simanek, G. J. McGarvey, J. A. Jablonowski, C. H. Wong, Chem. Rev. 1998, 98, 833-862; b)S. A. Gruner, E. Locardi, E. Lohof, H. Kessler, Chem. Rev. 2002, 102, 491-514.
    [7] a)P. H. Seeberger, Nat. Chem. Biol. 2009, 5, 368-372; b)T. J. Boltje, T. Buskas, G. J. Boons, Nat. Chem. 2009, 1, 611-622; c)X. M. Zhu, R. R. Schmidt, Angew. Chem. Int. Ed. 2009, 48, 1900-1934; d)M. Pudelko, J. Bull, H. Kunz, Chembiochem 2010, 11, 904-930.
    [8] a)B. Ernst, G. W. Hart, P. Sinaÿ, Carbohydrates in Chemistry and Biology, Wiley-VCH, Weinheim, 2000; b)B. O. Fraser-Reid, K. Tatsuta, J. Thiem, Glycoscience: Chemistry and Chemical Biology, 2nd ed., Springer-Verlag, New York, 2008; c)J. P. Kamerling, Comprehensive Glycoscience Elsevier, Amsterdam, 2007.
    [9] a)K.-L. Chang, M. M. L. Zulueta, X.-A. Lu, Y.-Q. Zhong, S.-C.Hung, J. Org. Chem. 2010, 75, 7424–7427; b)C. C. Wang, J. C. Lee, S. Y. Luo, S. S. Kulkarni, Y. W. Huang, C. C. Lee, K. L. Chang, S. C. Hung, Nature 2007, 446, 896-899; c)A. Francais, D. Urban, J. M. Beau, Angew. Chem. Int. Ed. 2007, 46, 8662-8665.
    [10] a)H. Tanaka, H. Yamada, T. Takahashi, Trends Glycosci. Glycotechnol. 2007, 19, 183-193; b)Y. H. Wang, X. S. Ye, L. H. Zhang, Org. Biomol. Chem. 2007, 5, 2189-2200; c)Y. H. Wang, L. H. Zhang, X. S. Ye, Comb. Chem. High Throughput Screening 2006, 9, 63-75; d)B. Yu, Z. Y. Yang, H. Z. Cao, Curr. Org. Chem. 2005, 9, 179-194.
    [11] Z. Y. Zhang, I. R. Ollmann, X.-S. Ye, R. Wischnat, T. Baasov, C.-H. Wong, J. Am. Chem. Soc. 1999, 121, 734-753.
    [12] a)O. J. Plante, E. R. Palmacci, P. H. Seeberger, Science 2001, 291, 1523-1527; b)P. H. Seeberger, Chem. Soc. Rev. 2008, 37, 19-28.
    [13] D. B. Werz, B. Castagner, P. H. Seeberger, J. Am. Chem. Soc. 2007, 129, 2770-2771.
    [14] a)X. Liu, R. Wada, S. Boonyarattanakalin, B. Castagner, P. H. Seeberger, Chem. Commun. 2008, 3510-3512; b)R. B. Andrade, O. J. Plante, L. G. Melean, P. H. Seeberger, Org. Lett. 1999, 1, 1811-1814.
    [15] a)M. C. Hewitt, P. H. Seeberger, Org. Lett. 2001, 3, 3699-3702; b)M. C. Hewitt, D. A. Snyder, P. H. Seeberger, J. Am. Chem. Soc. 2002, 124, 13434-13436.
    [16] a)T. Feizi, F. Fazio, W. C. Chai, C. H. Wong, Curr. Opin. Struct. Biol. 2003, 13, 637-645; b)O. Blixt, S. Head, T. Mondala, C. Scanlan, M. E. Huflejt, R. Alvarez, M. C. Bryan, F. Fazio, D. Calarese, J. Stevens, N. Razi, D. J. Stevens, J. J. Skehel, I. van Die, D. R. Burton, I. A. Wilson, R. Cummings, N. Bovin, C.-H. Wong, J. C. Paulson, Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 17033-17038; c)C.-H. Liang, C.-Y. Wu, Expert Rev. Proteomics 2009, 6, 631-645; d)P.-H. Liang, C.-Y. Wu, W. A. Greenberg, C.-H. Wong, Curr. Opin. Chem. Biol. 2008, 12, 86-92; e)O. Oyelaran, J. C. Gildersleeve, Curr. Opin. Chem. Biol. 2009, 13, 406-413; f)C.-Y. Wu, P.-H. Liang, C.-H. Wong, Org. Biomol. Chem. 2009, 7, 2247-2254; g)Y. Liu, A. S. Palma, T. Feizi, Biol. Chem. 2009, 390, 647-656.
    - 194 -
    [17] J. Stevens, O. Blixt, J. C. Paulson, I. A. Wilson, Nat. Rev. Microbiol. 2006, 4, 857-864.
    [18] a)C.-C. Wang, Y.-L. Huang, C.-T. Ren, C.-W. Lin, J.-T. Hung, J.-C. Yu, A.-L. Yu, C.-Y. Wu, C.-H. Wong, Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 11661-11666; b)H. H. Wandall, O. Blixt, M. A. Tarp, J. W. Pedersen, E. P. Bennett, U. Mandel, G. Ragupathi, P. O. Livingston, M. A. Hollingsworth, J. Taylor-Papadimitriou, J. Burchell, H. Clausen, Cancer Res. 2010, 70, 1306-1313.
    [19] F. G. Blix, A. Gottschalk, E. Klenk, Nature 1957, 179, 1088.
    [20] T. Angata, A. Varki, Chem. Rev. 2002, 102, 439-469.
    [21] a)R. Schauer, Curr. Opin. Struct. Biol. 2009, 19, 507-514; b)A. Varki, Trends Mol. Med. 2008, 14, 351-360; c)A. Varki, Nature 2007, 446, 1023-1029.
    [22] a)S. Kelm, R. Schauer, Int. Rev. Cytol. 1997, 175, 137-240; b)R. Schauer, Zoology 2004, 107, 49-64.
    [23] A. Varki, Curr. Opin. Cell Biol. 1992, 4, 257-266.
    [24] a)A. Varki, T. Angata, Glycobiology 2006, 16, 1R-27R; b)P. R. Crocker, A. Varki, Trends Immunol. 2001, 22, 337-342.
    [25] J. J. Skehel, D. C. Wiley, Annu. Rev. Biochem 2000, 69, 531-569.
    [26] S. Olofsson, T. Bergstrom, Ann. Med. 2005, 37, 154-172.
    [27] a)F. Malisan, R. Testi, Bba-Mol Cell Biol L 2002, 1585, 179-187; b)R. Schauer, H. Schmid, J. Pommerencke, M. Iwersen, G. Kohla, Molecular Immunology of Complex Carbohydrates-2 2001, 491, 325-342.
    [28] a)C. D. Meo, in Frontiers in modern carbohydrate chemistry (Ed.: A. V. Demchenko), ACS, Washington, DC, 2007, pp. 118-131; b)C. De Meo, U. Priyadarshani, Carbohydr. Res. 2008, 343, 1540-1552.
    [29] K. F. Johnson, Glycoconjugate J. 1999, 16, 141-146.
    [30] a)H. Yu, H. Chokhawala, R. Karpel, B. Wu, J. Zhang, Y. Zhang, Q. Jia, X. Chen, J. Am. Chem. Soc. 2005, 127, 17618-17619; b)X. Chen, A. Varki, ACS Chem. Biol. 2010, 5, 163-176; c)S. Muthana, H. Cao, X. Chen, Curr. Opin. Chem. Biol. 2009, 13, 573-581.
    [31] a)C.-S. Yu, K. Niikura, C.-C. Lin, C.-H. Wong, Angew. Chem. Int. Ed. 2001, 40, 2900-2903; b)X.-S. Ye, X. F. Huang, C.-H. Wong, Chem. Commun. 2001, 974-975.
    [32] a)M. J. Kiefel, M. von Itzstein, Chem. Rev. 2002, 102, 471-490; b)G. J. Boons, A. V. Demchenko, Chem. Rev. 2000, 100, 4539-4566; c)H. Ando, M. Kiso, in Glycoscience Chemistry and Chemical Biology (Eds.: B. O. Fraser-Reid, K. Tatsuta, J. Thiem), Springer-Verlag Berlin, Heidelberg, 2008, pp. 1313-1360; d)R. L. Halcomb, M. D. Chappell, J. Carbohydr. Chem. 2002, 21, 723-768; e)D. K. Ress, R. J. Linhardt, Curr. Org. Synth. 2004, 1, 31-46.
    [33] a)H. Paulsen, H. Tietz, Carbohydr. Res. 1984, 125, 47-64; b)A. Y. Khorlin, Privalov.Im, I. B. Bystrova, Carbohydr. Res. 1971, 19, 272-&.
    [34] a)T. J. Martin, R. R. Schmidt, Tetrahedron Lett. 1992, 33, 6123-6126; b)T. J. Martin, R. Brescello, A. Toepfer, R. R. Schmidt, Glycoconjugate J. 1993, 10, 16-25.
    [35] a)H. Kondo, Y. Ichikawa, C.-H. Wong, J. Am. Chem. Soc. 1992, 114, 8748-8750; b)M. M. Sim, H. Kondo, C.-H. Wong, J. Am. Chem. Soc. 1993, 115, 2260-2267.
    [36] C.-H. Hsu, K.-C. Chu, Y.-S. Lin, J.-L. Han, Y.-S. Peng, C.-T. Ren, C.-Y. Wu, C.-H. Wong, Chem. Eur. J. 2010, 16, 1754-1760.
    [37] A. Hasegawa, H. Ohki, T. Nagahama, H. Ishida, M. Kiso, Carbohydr. Res. 1991, 212, 277-281.
    [38] a)A. Marra, P. Sinay, Carbohydr. Res. 1990, 195, 303-308; b)V. Martichonok, G. M. Whitesides, J. Org. Chem. 1996, 61, 1702-1706.
    [39] A. Hasegawa, T. Nagahama, H. Ohki, K. Hotta, H. Ishida, M. Kiso, J. Carbohydr. Chem. 1991, 10, 493-498.
    [40] C. De Meo, O. Parker, Tetrahedron: Asymmetry 2005, 16, 303-307.
    [41] S. Cai, B. Yu, Org. Lett. 2003, 5, 3827-3830.
    - 195 -
    [42] T. Takahashi, H. Tsukamoto, H. Yamada, Tetrahedron Lett. 1997, 38, 8223-8226.
    [43] a)J. M. Haberman, D. Y. Gin, Org. Lett. 2001, 3, 1665-1668; b)J. M. Haberman, D. Y. Gin, Org. Lett. 2003, 5, 2539-2541.
    [44] A. Ishiwata, Y. Ito, Synlett 2003, 1339-1343.
    [45] K. Okamoto, T. Kondo, T. Goto, Tetrahedron Lett. 1986, 27, 5233-5236.
    [46] J. C. Castro-Palomino, Y. E. Tsvetkov, R. R. Schmidt, J. Am. Chem. Soc. 1998, 120, 5434-5440.
    [47] Y. Ito, T. Ogawa, Tetrahedron Lett. 1988, 29, 3987-3990.
    [48] Y. Ito, T. Ogawa, Tetrahedron Lett. 1987, 28, 6221-6224.
    [49] A. V. Demchenko, G. J. Boons, Tetrahedron Lett. 1998, 39, 3065-3068.
    [50] C. De Meo, A. V. Demchenko, G. J. Boons, J. Org. Chem. 2001, 66, 5490-5497.
    [51] a)H. Ando, Y. Koike, H. Ishida, M. Kiso, Tetrahedron Lett. 2003, 44, 6883-6886; b)H. Tanaka, M. Adachi, T. Takahashi, Chem. Eur. J. 2005, 11, 849-862.
    [52] K. Tanaka, T. Goi, K. Fukase, Synlett 2005, 2958-2962.
    [53] B. Sun, B. Srinivasan, X. Huang, Chem. Eur. J. 2008, 14, 7072-7081.
    [54] a)H. Tanaka, Y. Nishiura, T. Takahashi, J. Am. Chem. Soc. 2006, 128, 7124-7125; b)D. Crich, W. J. Li, J. Org. Chem. 2007, 72, 7794-7797; c)D. Crich, W. J. Li, J. Org. Chem. 2007, 72, 2387-2391; d)M. D. Farris, C. De Meo, Tetrahedron Lett. 2007, 48, 1225-1227; e)F.-F. Liang, L. Chen, G.-W. Xing, Synlett 2009, 425-428; f)C.-C. Lin, N.-P. Lin, L. S. Sahabuddin, V. R. Reddy, L.-D. Huang, K.-C. Hwang, C.-C. Lin, J. Org. Chem. 2010, 75, 4921-4928.
    [55] D. Crich, C. Navuluri, Angew. Chem. Int. Ed. 2010, 49, 3049-3052.
    [56] C.-C. Lin, K. T. Huang, C.-C. Lin, Org. Lett. 2005, 7, 4169-4172.
    [57] H. Paulsen, Angew. Chem. Int. Ed. Engl. 1982, 21, 155-173.
    [58] T. Ogawa, M. Sugimoto, Carbohydr. Res. 1985, 135, C5-C9.
    [59] C. De Meo, A. V. Demchenko, G. J. Boons, Aust. J. Chem. 2002, 55, 131-134.
    [60] S. Manabe, K. Ishii, Y. Ito, Eur. J. Org. Chem. 2011, 497-516.
    [61] a)O. J. Plante, R. B. Andrade, P. H. Seeberger, Org. Lett. 1999, 1, 211-214; b)O. J. Plante, E. R. Palmacci, P. H. Seeberger, Org. Lett. 2000, 2, 3841-3843; c)O. J. Plante, E. R. Palmacci, R. B. Andrade, P. H. Seeberger, J. Am. Chem. Soc. 2001, 123, 9545-9554; d)S. Hashimoto, T. Honda, S. Ikegami, J. Chem. Soc., Chem. Commun. 1989, 685-687; e)H. I. Duynstee, E. R. Wijsman, G. A. vanderMarel, J. H. vanBoom, Synlett 1996, 313-314.
    [62] a)S. C. Hung, C. H. Wong, Angew. Chem. Int. Ed. Engl. 1996, 35, 2671-2674; b)E. R. Palmacci, P. H. Seeberger, Org. Lett. 2001, 3, 1547-1550.
    [63] P. H. Seeberger, W. C. Haase, Chem. Rev. 2000, 100, 4349-4393.
    [64] a)O. Kanie, M. Kiso, A. Hasegawa, J. Carbohydr. Chem. 1988, 7, 501-506; b)U. Dabrowski, H. Friebolin, R. Brossmer, M. Supp, Tetrahedron Lett. 1979, 4637-4640; c)D. J. M. Vandervleugel, W. A. R. Vanheeswijk, J. F. G. Vliegenthart, Carbohydr. Res. 1982, 102, 121-130; d)K. Okamoto, T. Kondo, T. Goto, Bull. Chem. Soc. Jpn. 1987, 60, 637-643.
    [65] S. Prytulla, J. Lauterwein, M. Klessinger, J. Thiem, Carbohydr. Res. 1991, 215, 345-349.
    [66] M. Fridman, V. Belakhov, S. Yaron, T. Baasov, Org. Lett. 2003, 5, 3575-3578.
    [67] H. M. Zuurmond, P. A. M. Vanderklein, G. A. Vandermarel, J. H. Vanboom, Tetrahedron 1993, 49, 6501-6514.
    [68] T. J. Donohoe, J. G. Logan, D. D. Laffan, Org. Lett. 2003, 5, 4995-4998.
    [69] S. Komba, C. Galustian, H. Ishida, T. Feizi, R. Kannagi, M. Kiso, Angew. Chem. Int. Ed. Engl. 1999, 38, 1131-1133.
    [70] a)Z. T. Li, J. C. Gildersleeve, J. Am. Chem. Soc. 2006, 128, 11612-11619; b)Z. Li, J. C. Gildersleeve, Tetrahedron Lett. 2007, 48, 559-562.
    - 196 -
    [71] a)S. H. Itzkowitz, M. Yuan, C. K. Montgomery, T. Kjeldsen, H. K. Takahashi, W. L. Bigbee, Y. S. Kim, Cancer Res. 1989, 49, 197-204; b)E. Dabelsteen, J. Pathol. 1996, 179, 358-369.
    [72] a)C. Brocke, H. Kunz, Biorg. Med. Chem. 2002, 10, 3085-3112; b)S. Dziadek, H. Kunz, Chem. Rec. 2004, 3, 308-321.
    [73] J. B. Schwarz, S. D. Kuduk, X. T. Chen, D. Sames, P. W. Glunz, S. J. Danishefsky, J. Am. Chem. Soc. 1999, 121, 2662-2673.
    [74] N. Mathieux, H. Paulsen, M. Meldal, K. Bock, Journal of the Chemical Society-Perkin Transactions 1 1997, 2359-2368.
    [75] D. H. Dube, C. R. Bertozzi, Nat. Rev. Drug Discovery 2005, 4, 477-488.
    [76] H. Tanaka, Y. Tateno, Y. Nishiura, T. Takahashi, Org. Lett. 2008, 10, 5597-5600.
    [77] a)S. Raghavan, D. Kahne, J. Am. Chem. Soc. 1993, 115, 1580-1581; b)S. V. Ley, H. W. M. Priepke, Angew. Chem. Int. Ed. Engl. 1994, 33, 2292-2294; c)H. Yamada, T. Harada, T. Takahashi, J. Am. Chem. Soc. 1994, 116, 7919-7920.
    [78] a)O. Kanie, Y. Ito, T. Ogawa, J. Am. Chem. Soc. 1994, 116, 12073-12074; b)H. Yamada, T. Harada, H. Miyazaki, T. Takahashi, Tetrahedron Lett. 1994, 35, 3979-3982.
    [79] a)D. Crich, S. X. Sun, J. Am. Chem. Soc. 1998, 120, 435-436; b)J. D. C. Codee, R. E. J. N. Litjens, R. den Heeten, H. S. Overkleeft, J. H. van Boom, G. A. van der Marel, Org. Lett. 2003, 5, 1519-1522; c)X. Huang, L. Huang, H. Wang, X.-S. Ye, Angew. Chem. Int. Ed. 2004, 43, 5221-5224.
    [80] a)R. Kannagi, S. B. Levery, F. Ishigami, S. I. Hakomori, L. H. Shevinsky, B. B. Knowles, D. Solter, J. Biol. Chem. 1983, 258, 8934-8942; b)S. Hakomori, Y. Zhang, Chem. Biol. 1997, 4, 97-104.
    [81] F. Burkhart, Z. Y. Zhang, S. Wacowich-Sgarbi, C.-H. Wong, Angew. Chem. Int. Ed. 2001, 40, 1274-1277.
    [82] T. K. K. Mong, C.-Y. Huang, C.-H. Wong, J. Org. Chem. 2003, 68, 2135-2142.
    [83] K.-K. T. Mong, C.-H. Wong, Angew. Chem. Int. Ed. 2002, 41, 4087-4090.
    [84] a)T. K.-K. Mong, H.-K. Lee, S. G. Duron, C.-H. Wong, Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 797-802; b)J.-C. Lee, W. A. Greenberg, C.-H. Wong, Nat. Protoc. 2006, 1, 3143-3152.
    [85] Z. Y. Zhang, K. Niikura, X. F. Huang, C.-H. Wong, Can. J. Chem. 2002, 80, 1051-1054.
    [86] J.-C. Lee, C.-Y. Wu, J. V. Apon, G. Siuzdak, C.-H. Wong, Angew. Chem. Int. Ed. 2006, 45, 2753-2757.
    [87] D. Crich, B. Wu, Org. Lett. 2008, 10, 4033-4035.
    [88] X. N. Li, L. J. Huang, X. C. Hu, X. F. Huang, Org. Biomol. Chem. 2009, 7, 117-127.
    [89] Y. Nagao, T. Nekado, K. Ikeda, K. Achiwa, Chem. Pharm. Bull. (Tokyo) 1995, 43, 1536-1542.
    [90] D. Crich, M. Smith, J. Am. Chem. Soc. 2001, 123, 9015-9020.
    [91] a)M. Satoh, F. M. Nejad, H. Ohtani, A. Ito, C. Ohyama, S. Saito, S. Orikasa, S. I. Hakomori, Int. J. Oncol. 2000, 16, 529-536; b)M. Satoh, K. Handa, S. Saito, S. Tokuyama, A. Ito, N. Miyao, S. Orikasa, S. Hakomori, Cancer Res. 1996, 56, 1932-1938.
    [92] a)J. G. Krupnick, I. Damjanov, A. Damjanov, Z. M. Zhu, B. A. Fenderson, Int. J. Cancer 1994, 59, 692-698; b)Y. U. Katagiri, K. Ohmi, C. Katagiri, T. Sekino, H. Nakajima, T. Ebata, N. Kiyokawa, J. Fujimoto, Glycoconjugate J. 2001, 18, 347-353; c)J. Wenk, P. W. Andrews, J. Casper, J. I. Hata, M. F. Pera, A. Vonkeitz, I. Damjanov, B. A. Fenderson, Int. J. Cancer 1994, 58, 108-115.
    [93] a)A. Stapleton, E. Nudelman, H. Clausen, S. Hakomori, W. E. Stamm, J. Clin. Invest. 1992, 90, 965-972; b)A. E. Stapleton, M. R. Stroud, S. I. Hakomori, W. E. Stamm, Infect. Immun. 1998, 66, 3856-3861; c)M. R. Stroud, A. E. Stapleton, S. B. Levery,
    - 197 -
    Biochemistry (Mosc). 1998, 37, 17420-17428; d)L. L. W. Cooling, T. A. W. Koerner, S. J. Naides, J. Infect. Dis. 1995, 172, 1198-1205.
    [94] H. Ishida, R. Miyawaki, M. Kiso, A. Hasegawa, J. Carbohydr. Chem. 1996, 15, 163-182.
    [95] J. M. Lassaletta, K. Carlsson, P. J. Garegg, R. R. Schmidt, J. Org. Chem. 1996, 61, 6873-6880.
    [96] Z. Wang, M. Gilbert, H. Eguchi, H. Yu, J. S. Cheng, S. Muthana, L. Y. Zhou, P. G. Wang, X. Chen, X. F. Huang, Adv. Synth. Catal. 2008, 350, 1717-1728.
    [97] C.-Y. Huang, D. A. Thayer, A.-Y. Chang, M. D. Best, J. Hoffmann, S. Head, C.-H. Wong, Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 15-20.
    [98] G. A. van der Marel, J. Dinkelaar, M. D. Witte, L. J. van den Bos, H. S. Overkleeft, Carbohydr. Res. 2006, 341, 1723-1729.
    [99] W. H. Organization, Bull. WHO 1980, 58, 294-295.
    [100] a)C. del Rio, J. Guarner, Trans. Am. Clin. Climatol. Assoc. 2010, 121, 128-137; discussion 138-140; b)C. F. Basler, Infect. Disord.: Drug Targets 2007, 7, 282-293; c)N. J. Cox, K. Subbarao, Annu. Rev. Med. 2000, 51, 407-421; d)T. Horimoto, Y. Kawaoka, Nature Reviews Microbiology 2005, 3, 591-600.
    [101] J. Dushoff, J. B. Plotkin, C. Viboud, D. J. Earn, L. Simonsen, Am. J. Epidemiol. 2006, 163, 181-187.
    [102] R. B. Belshe, N. Engl. J. Med. 2005, 353, 2209-2211.
    [103] N. National Institute of Allergy and Infectious Diseases, 2011.
    [104] W. Rohde, C. Scholtissek, Arch. Virol 1980, 64, 213-223.
    [105] P. Palese, K. Tobita, M. Ueda, R. W. Compans, Virology 1974, 61, 397-410.
    [106] a)R. Daniels, B. Kurowski, A. E. Johnson, D. N. Hebert, Mol. Cell 2003, 11, 79-90; b)I. T. Schulze, J. Infect. Dis. 1997, 176 Suppl 1, S24-28.
    [107] D. J. Vigerust, V. L. Shepherd, Trends Microbiol. 2007, 15, 211-218.
    [108] R. Wagner, T. Wolff, A. Herwig, S. Pleschka, H. D. Klenk, J. Virol. 2000, 74, 6316-6323.
    [109] H. D. Klenk, R. Wagner, D. Heuer, T. Wolff, Virus Res. 2002, 82, 73-75.
    [110] L. J. Mitnaul, M. R. Castrucci, K. G. Murti, Y. Kawaoka, J. Virol. 1996, 70, 873-879.
    [111] Y. Abe, E. Takashita, K. Sugawara, Y. Matsuzaki, Y. Muraki, S. Hongo, J. Virol. 2004, 78, 9605-9611.
    [112] C. Chaipan, D. Kobasa, S. Bertram, I. Glowacka, I. Steffen, T. S. Tsegaye, M. Takeda, T. H. Bugge, S. Kim, Y. Park, A. Marzi, S. Pohlmann, J. Virol. 2009, 83, 3200-3211.
    [113] K. L. Deshpande, V. A. Fried, M. Ando, R. G. Webster, Proc. Natl. Acad. Sci. U. S. A. 1987, 84, 36-40.
    [114] S. J. Gamblin, J. J. Skehel, J. Biol. Chem. 2010, 285, 28403-28409.
    [115] G. N. Rogers, J. C. Paulson, Virology 1983, 127, 361-373.
    [116] M. N. Matrosovich, A. S. Gambaryan, M. P. Chumakov, Virology 1992, 188, 854-858.
    [117] a)T. Ito, Y. Suzuki, T. Suzuki, A. Takada, T. Horimoto, K. Wells, H. Kida, K. Otsuki, M. Kiso, H. Ishida, Y. Kawaoka, J. Virol. 2000, 74, 9300-9305; b)M. N. Matrosovich, A. S. Gambaryan, S. Teneberg, V. E. Piskarev, S. S. Yamnikova, D. K. Lvov, J. S. Robertson, K. A. Karlsson, Virology 1997, 233, 224-234.
    [118] A. Gambaryan, S. Yamnikova, D. Lvov, A. Tuzikov, A. Chinarev, G. Pazynina, R. Webster, M. Matrosovich, N. Bovin, Virology 2005, 334, 276-283.
    [119] K. P. R. Kartha, M. Aloui, R. A. Field, Tetrahedron Lett. 1996, 37, 8807-8810.
    [120] K. K. T. Mong, C.-H. Wong, Angew. Chem. Int. Ed. 2002, 41, 4087-4090.
    [121] M. R. Pratt, C. R. Bertozzi, Org. Lett. 2004, 6, 2345-2348.
    [122] Z. H. Gan, S. D. Cao, Q. Q. Wu, R. Roy, J. Carbohydr. Chem. 1999, 18, 755-773.
    [123] P. H. Liang, S. K. Wang, C. H. Wong, J. Am. Chem. Soc. 2007, 129, 11177-11184.
    - 198 -
    [124] A. Srinivasan, K. Viswanathan, R. Raman, A. Chandrasekaran, S. Raguram, T. M. Tumpey, V. Sasisekharan, R. Sasisekharan, Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 2800-2805.
    [125] J. Stevens, O. Blixt, L. Glaser, J. K. Taubenberger, P. Palese, J. C. Paulson, I. A. Wilson, J. Mol. Biol. 2006, 355, 1143-1155.
    [126] C.-C. Wang, J.-R. Chen, Y.-C. Tseng, C.-H. Hsu, Y.-F. Hung, S.-W. Chen, C.-M. Chen, K.-H. Khoo, T.-J. Cheng, Y.-S. Cheng, J.-T. Jan, C.-Y. Wu, C. Ma, C.-H. Wong, Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 18137-18142.
    [127] M. W. Chen, T. J. R. Cheng, Y. X. Huang, J. T. Jan, S. H. Ma, A. L. Yu, C. H. Wong, D. D. Ho, Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 13538-13543.
    [128] N. K. Sauter, M. D. Bednarski, B. A. Wurzburg, J. E. Hanson, G. M. Whitesides, J. J. Skehel, D. C. Wiley, Biochemistry (Mosc). 1989, 28, 8388-8396.
    [129] J. Stevens, O. Blixt, T. M. Tumpey, J. K. Taubenberger, J. C. Paulson, I. A. Wilson, Science 2006, 312, 404-410.
    [130] Y. Durocher, S. Perret, A. Kamen, Nucleic Acids Res 2002, 30, E9.
    [131] P. J. Reeves, N. Callewaert, R. Contreras, H. G. Khorana, Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 13419-13424.
    [132] C.-J. Wei, L. Xu, W.-P. Kong, W. Shi, K. Canis, J. Stevens, Z.-Y. Yang, A. Dell, S. M. Haslam, I. A. Wilson, G. J. Nabel, J. Virol. 2008, 82, 6200-6208.
    [133] a)A. Chandrasekaran, A. Srinivasan, R. Raman, K. Viswanathan, S. Raguram, T. M. Tumpey, V. Sasisekharan, R. Sasisekharan, Nat. Biotechnol. 2008, 26, 107-113; b)R. A. Childs, A. S. Palma, S. Wharton, T. Matrosovich, Y. Liu, W. Chai, M. A. Campanero-Rhodes, Y. Zhang, M. Eickmann, M. Kiso, A. Hay, M. Matrosovich, T. Feizi, Nat. Biotechnol. 2009, 27, 797-799; c)T. R. Maines, A. Jayaraman, J. A. Belser, D. A. Wadford, C. Pappas, H. Zeng, K. M. Gustin, M. B. Pearce, K. Viswanathan, Z. H. Shriver, R. Raman, N. J. Cox, R. Sasisekharan, J. M. Katz, T. M. Tumpey, Science 2009, 325, 484-487; d)M. Ogata, K. I. P. J. Hidari, T. Murata, S. Shimada, W. Kozaki, E. Y. Park, T. Suzuki, T. Usui, Bioconjugate Chem. 2009, 20, 538-549.
    [134] a)G. Srivastava, O. Hindsgaul, J. Carbohydr. Chem. 1991, 10, 927-933; b)T. Buskas, P. Konradsson, S. Oscarson, J. Carbohydr. Chem. 2001, 20, 569-583; c)J. Alais, A. Veyrieres, Carbohydr. Res. 1990, 207, 11-31; d)K. M. Koeller, C.-H. Wong, Chem. Eur. J. 2000, 6, 1243-1251.
    [135] H. Shimizu, Y. Ito, O. Kanie, T. Ogawa, Bioorg. Med. Chem. Lett. 1996, 6, 2841-2846.
    [136] D. Vasiliu, N. Razi, Y. N. Zhang, N. Jacobsen, K. Allin, X. F. Liu, J. Hoffmann, O. Bohorov, O. Blixt, Carbohydr. Res. 2006, 341, 1447-1457.
    [137] G. J. Boons, Tetrahedron 1996, 52, 1095-1121.
    [138] R. Kakarla, R. G. Dulina, N. T. Hatzenbuhler, Y. W. Hui, M. J. Sofia, J. Org. Chem. 1996, 61, 8347-8349.
    [139] L. Yan, D. Kahne, J. Am. Chem. Soc. 1996, 118, 9239-9248.
    [140] a)T. M. Wrodnigg, A. E. Stutz, Angew. Chem. Int. Ed. 1999, 38, 827-828; b)A. E. Stutz, G. Dekany, B. Eder, C. Illaszewicz, T. M. Wrodnigg, J. Carbohydr. Chem. 2003, 22, 253-265.
    [141] U. Ellervik, G. Magnusson, J. Org. Chem. 1998, 63, 9314-9322.
    [142] T. Fuchss, R. R. Schmidt, Synthesis-Stuttgart 1998, 753-758.
    [143] Y. H. Niu, N. Wang, X. P. Cao, X. S. Ye, Synlett 2007, 2116-2120.
    [144] D. O. Chaffin, K. McKinnon, C. E. Rubens, Mol. Microbiol. 2002, 45, 109-122.
    [145] J. W. Dennis, S. Laferte, C. Waghorne, M. L. Breitman, R. S. Kerbel, Science 1987, 236, 582-585.
    [146] R. D. Cummings, S. Kornfeld, J. Biol. Chem. 1984, 259, 6253-6260.
    [147] M. Demetriou, M. Granovsky, S. Quaggin, J. W. Dennis, Nature 2001, 409, 733-739.
    [148] F. T. Liu, G. A. Rabinovich, Nature Reviews Cancer 2005, 5, 29-41.
    - 199 -
    [149] Y. Zhuo, S. L. Bellis, J. Biol. Chem. 2011, 286, 5935-5941.
    [150] S. R. Stowell, C. M. Arthur, P. Mehta, K. A. Slanina, O. Blixt, H. Leffler, D. F. Smith, R. D. Cummings, J. Biol. Chem. 2008, 283, 10109-10123.
    [151] F. H. de Melo, D. Butera, R. S. Medeiros, L. N. Andrade, S. Nonogaki, F. A. Soares, R. A. Alvarez, A. M. Moura da Silva, R. Chammas, J. Histochem. Cytochem. 2007, 55, 1015-1026.
    [152] S. M. Massa, D. N. Cooper, H. Leffler, S. H. Barondes, Biochemistry (Mosc). 1993, 32, 260-267.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE