簡易檢索 / 詳目顯示

研究生: 林左田
論文名稱: 含邊緣開口疊層板中二維及三維應力集中因子的比較
Comparison of 2D and 3D Stress Concentration Factor in Edge Notched Laminates
指導教授: 蔣長榮
口試委員: 張禎元
葉孟考
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 63
中文關鍵詞: 疊層板應力集中邊緣開口
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 複合材料疊層板是由一層一層的單層板所疊加而成,每一層疊層次序可依需求而有所不同,而疊層板在實際使用上很常遇到開孔加工行為,會有應力集中的現象產生,會造成材料裂縫的生成成長而導致破壞。本文研究主要目的是在探討一含邊緣開口的三維複合材料疊層板,在無窮遠處受一單軸向拉伸負載作用時,以有限元素法,探討在不同的孔徑對厚度比、還有不同疊層次序下其應力集中因子的探討,而藉由有限元素套裝軟體『ANSYS』來進行本文的模擬與分析。
    纖維走向0度與90度邊緣開口單層板的二維應力分析,無論在平面應力或平面應變的情況下,其x方向的應力皆隨著孔徑上升而略微上升。而纖維走向0度與90度邊緣開口單層板的三維應力分析,其開口處的x方向應力最大值皆會發生在板子的中平面處,會隨著孔徑上升而略微下降。以[0/90]s堆疊的邊緣開孔疊層板,其在0度層處會有較大的應力集中因子,其應力集中因子則會隨著開孔半徑的增加而稍下降。以[θ/-θ]s堆疊的邊緣開孔疊層板,隨著θ增加應力集中因子會跟著減小。


    圖表目錄 第一章 緒論 1.1 前言 1.2 研究動機 1.3 文獻回顧 第二章 基本理論 2.1 複合材料單層板(LAMINA)[12] 2.2 單層板應力-應變關係式[12] 2.3 應力集中因子 2.4 二維的應力集中因子理論預測[22] 第三章 有限元素分析 3.1 有限元素法基本概念[20] 3.2 有限元素方程式[20] 3.3 等參數單元[20] 3.4 『ANSYS』軟體簡介[21] 第四章 模型分析與建立 4.1 問題描述 4.2 模型建立 4.2.1 二分之一無缺口疊層板模型 4.2.2 二分之一邊緣開口疊層板模型 4.2.3 邊緣開口疊層板收斂性分析 4.3 模型驗證 4.3.1 邊緣開口單層板二維應力驗證 4.3.2 邊緣開口單層板三維應力驗證 4.3.3 三維無缺口疊層板模型驗證 第五章 結果與討論 第六章 結論 參考文獻

    [1] F.-K. Chang and K.-Y. Chang, " Post-failure analysis of bolted composite joints," Journal of Composite Materials, vol. 21, pp. 809-833, 1987.
    [2] F.-K. Chang and K.-Y. Chang, "A progressive damage model for laminated," Journal of Composite Materials, vol. 21, pp. 834-855, 1987.
    [3] F.-K. Chang and L.-B. Lessard, "Damage tolerance of laminated composite containing an open hole and subjected to compressive loadings:part one-analysis," Journal of Composite Materials, vol. 25, pp. 2-43, 1991.
    [4] F.-K. Chang and L.-B. Lessard, "Damage tolerance of laminated composite containing an open hole and subjected to compressive loadings:part two-experiment," Journal of Composite Materials, vol. 25, pp. 44-64, 1991.
    [5] F.-K. Chang, L. Sheng and K.-Y. Chang, "Damage tolerance of laminated composite containing an open hole and subjected to tensile loadings," Journal of Composite Materials, vol. 25, pp. 274-301, 1991.
    [6] S. Tan, "Tensile and compressive notched strength of peek matrix composite laminates," Journal of Reinforced Plastics and Composite, vol. 6, pp. 253-267, 1987.
    [7] S. Tan, "Notched strength prediction and design laminated composite under in-plane loadings," Journal of Composite Materials, vol. 21, pp. 750-780, 1987.
    [8] S. Tan, "Laminated composites containing an elliptical opening one-approximate stress analysis and fracture models," Journal of Composite Materials, vol. 21, pp. 925-948, 1987.
    [9] S. Tan, "Laminated composites containing an elliptical opening two-experiment and model modification," Journal of Composite Materials, vol. 21, pp. 946-948, 1987.
    [10] S. Tan, "Effective stress fracture models for unnotched and notched multidirectional laminates," Journal of Composite Materials, vol. 22, pp. 322-340, 1988.
    [11] 李凱元, "開孔纖維複材疊層板受單軸壓力之非線性破壞分析," 國立成功大學土木工程研究所, 2004.
    [12] R. F. Gibson, Principle of Composite Material Mechanics, McGraw-Hill, 1994.
    [13] W. Yao and X. Yu, "Stress concentration factor for an orthotropic finite-width plate containing elliptical notches," Composite Science and Technology, vol. 41, pp. 47-53, 1991.
    [14] 盧廷鉅, "含孔複材疊層板應力分析-有限單元法," 國立清華大學動力機械所碩士論文, 1993.
    [15] 趙浩良, "有限寬度異向性平板含邊緣開口應力集中問題," 國立清華大學動力機械所碩士論文, 1997.
    [16] N.-K. Jain and N.-D. Mittal, "Finite element analysis for stress concentration and deflection in isotropic,orthotropic and laminated composite plates with central circular hole under transverse static loading," Materials Science and Engineering, A498, pp. 115-124, 2008.
    [17] 陳逸凡, "異向性平板中邊緣開口之三維彈塑性應力分析," 國立清華大學動力機械所碩士論文, 2011.
    [18] 詹智超, "利用有限單元法分析疊層板中邊緣開口之應力分析," 國立清華大學動力機械所碩士論文, 2013.
    [19] M. H. Sadd, Elasticity Theory ,Applications and Numerics, Kingston: Elsevier, 2005.
    [20] W. John and P. B. Mellor, Engineering Plasticity, Chichester: Ellis Horwood Ltd, 1985.
    [21] 劉晉奇;褚晴輝, 有限元素分析與ANSYS的工程應用, 滄海書局, 2006.
    [22] C.-R. Chiang, "Stress concentration factors of edge notched orthotropic plates," Journal of Strain Analysis, vol. 33, pp. 398-398, 1998.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE