簡易檢索 / 詳目顯示

研究生: 謝怡帆
論文名稱: PCL-b-PB團聯式共聚合物結晶動力學與結晶形態之研究
指導教授: 陳信龍
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 123
中文關鍵詞: 結晶團聯式共聚合物形態
外文關鍵詞: crystallization, block copolymer, morphology
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 團聯式共聚合物可利用摻合入較小分子量之均聚物的方式,利用均聚物融入團聯式共聚合物相對微相中的膨潤效果來改變系統之形態。而根據所摻合入之均聚物之分子量大小,可將摻合體系統分為wet brush與dry brush。本研究著重於團聯式共聚合物與均聚物的摻合系統,在對稱的團聯式共聚合物PB(11.5k)-b-PCL(12.5k)中,摻和入相對分子量較小的PB均聚物,造成wet brush的效果。
    在熔融態的形態上,從實驗之結果中我們可發現,隨著PB均聚物含量的增加,系統之形態會由原本之層狀結構(wPB=0.5~0.6)轉變為六角圓柱堆積(wPB=0.7~0.75)及散亂排列(liquid like)之圓球結構(wPB=0.8~0.85),而此微相形態的轉變亦會對團聯式共聚合物中PCL鏈段之結晶行為有所影響,造成在DSC的等速率降溫實驗中,PCL鏈段之結晶溫度與系統之微相形態有一對一之關係。
    在wPB=0.7的DSC等溫實驗中,不論結晶溫度為何,所得到之Avrami n值皆大於1,顯示是為”breakout”的結晶模式。而隨著結晶溫度的下降,其PCL鏈段之結晶速率在-15℃時會有一個最大值,此最大值是由結晶驅動力與分子鏈運動能力兩因素互相競爭之下所產生的結果;而較特別的是在極低之結晶溫度時(-41℃),其結晶速率會有一明顯、不連續的增加,而此是由於在極低的結晶溫度時,均質成核對結晶速率的貢獻會明顯增加,造成系統整體之結晶速率有明顯之提升。
    而在PCL鏈段結晶之後,不論其熔融態之形態為何,在所觀察之結晶溫度中,其原本之微相形態皆會被結晶所破壞,轉而形成由結晶PCL與amorphous PB交錯堆疊所形成的層狀結構,呈現了breakout的結晶模式。


    The morphology of block copolymer can be tailored by blending with the
    corresponding homopolymer if the homopolymer is uniformly solubilized in the
    microdomain. Depending on the molecular weight of the homopolymer, the blend
    system may exhibit “wet-brush” phase behavior or “dry-brush” phase behavior in the
    melt. In this report, we study the morphology and crystallization kinetics of a series of
    wet-brush blends of a symmetric polybutadiene-block-poly( ε -caprolactone)
    ( PB-b-PCL ) and a low molecular weight homopolymer PB.
    In the study of melt state morphology, we found that as the weight fraction of PB
    increases, the microdomain structure of the blend system changes from
    lamellae(wPB=0.5~0.6) to hexagonally-packed PCL cylinder(wPB=0.7~0.75) and
    liquid-like packed PCL sphere (wPB=0.8~0.85). The crystallization behavior of PCL is
    strongly affected by this morphological transformation; their crystallization rate was
    highly sensitive to the microdomain morphology. The fixed cooling rate experiment in
    the DSC revealed that freezing temperature exhibits one to one correlation with the
    meet to the melt state morphology.
    The isothermal crystallization kinetics in wPB=0.7 was properly described by the
    classical Avrami equation, indicating that the crystallization started from
    heterogeneous nucleation followed by long-range crystal growth. There has a
    maximum in crystallization rate Due to the competition between crystallization
    driving force and mobility of PCL block. We also found an unusual increase in
    crystallization rate at –41 ℃ ,because at very low crystallization temperature,
    homogeneous nucleation dominated crystallization rate and increased overall
    crystallization rate.
    After PCL crystallized, melt state morphology were all destroyed and become the
    morphology consisting of alternating amorphous PB and crystalline PCL lamellae,
    show the “breakout” crystallization mode.

    目錄 圖目錄 表目錄 一、 文獻回顧 1.1 前言 1.2 無定形團聯式共聚合物之形態轉化 1.3 結晶性團聯式共聚合物結晶行為對形態之影響 1.4 團聯式共聚合物摻合體之形態研究 1.5團聯式共聚合物grain boundary缺陷及螺旋體形態之研究 二、 實驗部分 2.1 研究目的與動機 2.2 樣品 2.3 實驗步驟 2.3-1摻合體製備過程 2.3-2實驗項目 2.4 儀器原理 2.4-1微分熱卡計 2.4-2小角度X光散射儀 2.4-3穿透式電子顯微鏡 三、 結果與討論 3.1 PB-b-PCL╱PB摻合體熔融態之微相分離形態 3.2 PB-b-PCL╱h-PB摻合體之結晶動力學與結晶誘導形態之轉化 3.2-1結晶速率與摻合體形態之關連性 3.2-2等溫結晶動力學實驗 3.2-3 PCL-b-PB/h-PB摻合體結晶誘導形態轉化 3.3 PB-b-PCL╱PB摻合體特殊形態之研究 四、 結論 五、 參考文獻

    1. Inoue, T.; Soen, T.; Hashimoto, T.; Kawai, H. Macromolecules 1970, 3, 87.
    2. Leibler, L.; Pincus, A. Macromolecules 1984, 17, 2922.
    3. Winey, K. I.; Thomas, E. L.; Fetters, L. J. Macromolecules 1991, 24, 6182.
    4. Hashimoto, T.; Koizumi, S.; Hasegawa, H.; Izumitani, T.; Hyde, S. T. Macromolecules 1992, 25, 1433.
    5. Han, C. D.; Baek, D. M.; Kim, J.; Kimishima, K.; Hashimoto, T. Macromolecules 1992, 25, 3052.
    6. Winey, K. I.; Thomas, E. L.; Fetters, L. J. Macromolecules 1992, 25, 422.
    7. Meier, D. J. J.Polym.Sci., part C 1969, 26, 81.
    8. Helfand, E. Macromolecules 1975, 8, 552.
    9. Helfand, E.; Wasserman, Z. R. Macromolecules 1978, 11, 960.
    10. Helfand, E.; Wasserman, Z. R. Macromolecules 1980, 13, 994.
    11. Helfand, E.; Wasserman, Z. R. Macromolecules 1978, 11, 960.
    12. Hashimoto, T.; Kowsaka, K.; Shibayama, M.; Suehiro, S. Macromolecules 1986, 19, 750.
    13. Hashimoto, T.; Kowsaka, K.; Shibayama, M.; Kawai, H. Macromolecules 1986, 19, 754.
    14. Sakurai, S.; Kawada, H.; Hashimoto, T.; Fetters, L.J. Macromolecules 1993, 26, 5796.
    15. Naoki Sakamoto.; Hashimoto, T.; Chang Dae Han.; Do Kim; Nitin Y. Vaidya Macromolecules 1997, 30, 1621.
    16. Leibler, L. Macromolecules 1980, 13, 1602.
    17. Ohta, T.; Kawasaki, K. Macromolecules 1986, 19, 2621.
    18. Vavasour, J. D.; Whitemore, M. D. Macromolecules 1992, 25, 5477.
    19. Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, 7641.
    20. Haiduk, D. A.; Takenouchi, H.; Hillmyer, M.A.; Bates, F.S. Macromolecules 1997,30,3788.
    21. Hajduk, D.A.; Harper, P.E.;Gruner, S.M.; Haneker, C.C.; Kim, G.;Thomas, E.L.; Fetters, L.J. Macromolecules 1994, 27, 4063..
    22. Alward, D. B.; Kinning, D.J.; Thomas, E. L.; Fetters, L. J. Macromolecules 1986,19,215.
    23. Tomas, D. B.; Alward, D. B.; Kinning, D. J.;Handlin, D. L.; Jr.; Fetters, L. J. Macromolecules 1986,19,2197.
    24. Hashimoto, T.; Takenaka, M. Physica A 2000, 276, 22.
    25. Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, 7641.
    26. Matsen, M. W.; Bates, F. S. Journal of Polymer Science B:Polymer Physics 1997, 35, 945
    27. Kimishima, K.; Koga, T.; Hashimoto, T Macromolecules 2000,33,968.
    28. Loo, Y. L.; Register, R. A.; Ryan, A. J.; Dee, G. T Macromolecules 2001,34, 8968.
    29. Loo, Y. L.; Register, R. A.; Ryan, A. J. Macromolecules 2002,35, 2365.
    30. Shiomi, T.; Takeshita,H.; Kawaguchi, H.; Nagai, M.; Takenaka, K.; Miya, M. Macromolecules 2002, 35, 8056.
    31. Hamley, I. W.; Castelletto, V.; Floudas, G.; Schipper, F. Macromolecules, 2002, 35, 883.
    32. Quiram, D. J.; Register, R. A.; Marchand, G. R. Macromolecules 1997, 30, 4551.
    33. Rangarajan, P.; Register, R. A.; Adamson, D. H.; Fetters, L.J.; Bras, W.; Naylor, S.; Ryan, A. J. Macromolecules 1995,28, 1422.
    34. Chen, H. L.; Hsiao, S. C.; Lin, T. L.; Yamauchi, K.;Hasegawa, H.; Hashimoto, T. Macromolecules 2001, 34, 671.
    35. Chen, H. L.; Wu, J. C.; Lin, T. L.; Lin, J. S. Macromolecules 2001, 34, 6936.
    36. Hong, S.; Yang, L.; MacKnight, W. J.; Gido, S. P. Macromolecular 2001, 34, 7009.
    37. Zhu, L.; Cheng, S. Z. D.; Calhoun, B. H.; Ge, Q.; Quirk, R. P.; Thomas, E. L.; Hsiao, B. S.; Yeh, F.; Lotz, B. Polymer,2001, 42, 5829.
    38. Zhu, L.; Cheng, S. Z. D.; Calhoun, B. H.; Ge, Q.; Quirk, R.P.; Thomas, E. L.; Hsiao, B. S.; Yeh, F.; Lotz, B. J. Am. Chem.Soc. 2000, 122, 5957.
    39. Loo, Y.-L.; Register, R. A.; Ryan, A. J. Phys. Rev. Lett. 2000,84, 4120.
    40. Weimann, P. A.; Hajduk, D. A.; Chu, C.; Chaffin, K. A.; Brodil, J. C.; Bates, F. S. J. Polym. Sci., Polym. Phys. 1999, 37, 2053.
    41. Nojima, S.; Kato, K.; Yamamoto, S.; Ashida, T. Macromolecules 1992,25,2237.
    42. Nojima, S.; Ono, M.; Ashida, T. Polymer Journal 1992,24,1271.
    43. Nojima, S.; Nakano, H.; Takahashi, Y.; Ashida, T. Polymer 1994,35,3479.
    44. Nojima, S.; Yamamoto, S.; Ashida, T. Polymer Journal 1995,27,673.
    45. Nojima, S.; Nakano, H.; Ashida, T. Polymer 1993,34,4168.
    46. Xu, J. T.; Turne×r, S. C.; Fairclough, J. P. A.; Mai, S. M.; Ryan, A. J. Macromolecules 2002, 35, 3614.
    47. Winey, K. I.; Thomas, E. L.; Fetters, L. J. Macromolecules 1992, 25,2645.
    48. Adedeji, A.; Jamieson, A. M.; Hudson, S. D. Polymer 1995, 36, 2753.
    49. Hashimoto, T.; Tanaka, H.; Hasegawa, H. Macromolecules 1990, 23, 4378.
    50. Tanaka, H.; Hasegawa, H.; Hashimoto, T. Macromolecules 1991, 24,240.
    51. Hashimoto, T.; Koizumi, S.; Hasegawa, H. Physica B. 1995, 213&214, 676.
    52. Koizumi, S.; Hasegawa, H.; Hashimoto,T .Makromol. Chem. Macromol. Symp. 1992, 62, 75.
    53. Gido, S.P.; Gunther, J.; Thomas, E.L. Macromolecules 1993,26, 4506.
    54. Gido, S.P.; Thomas, E.L. Macromolecules 1994,27, 849.
    55. Gido, S.P.; Thomas, E.L. Macromolecules 1994,27, 6137.
    56. Gido, S.P.; Thomas, E.L. Macromolecules 1997,30, 3739.
    57. Burgaz, E.; Gido, S.P. Macromolecules 2000,33,8739.
    58. Hashimoto, T; Mitsumura, N.; Yamaguchi, D.; Takenaka, M.; Morita, H.; Kawakatsu, T.; Doi, M. Polymer 2001,42,8477.
    59. Krappe, U.; Stadler, R.; Martin, I.V. Macromolecules 1995,28, 4558.
    60. Li, C.Y.; Cheng,S.Z.D.; Ge, J.J.; Bai, F.; Zhang, J.Z.; Mann, I.K.; Chien, L.C.; Harris, F.W.; Lotz, B. J. Am. Chem. Soc. 2000, 122, 72.
    61. Li, C.Y.; Donghang Yan, D.; Cheng, S.Z.D.; Bai, F.; He, T.; Chien, L.C.; Frank W. Harris, F.W.; Lotz, B. Macromolecules 1999, 32, 524.
    62. Li, C.Y.; Ge, J.J.; Bai, F.; Calhoun, B.H.; Harris, F.W.; Cheng, S.Z.D.; Chien, L.C.; Lotz, B.; Keith, H.D. Macromolecules 2001, 34, 3634.
    63. Sakurai, S.; Momii, T.; Taie, K.; Shibayama, M.; Nomura, S.; Hashimoto, T. Macromolecules 1993,26, 486.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE