研究生: |
蕭世裕 Hsiao, Shih-Yu |
---|---|
論文名稱: |
使用多通腔體系統對微焦耳級脈衝進行後壓縮 Post-Compression of Few-Microjoule Pulses Using Multipass-Cell Systems |
指導教授: |
陳明彰
Chen, Ming-Chang |
口試委員: |
林明緯
Lin, Ming-Wei 賈世璿 Chia, Shih-Hsuan |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2025 |
畢業學年度: | 113 |
語文別: | 中文 |
論文頁數: | 77 |
中文關鍵詞: | 微焦耳等級脈衝 、自相位調制 、多通腔體 、非線性拓展頻寬 |
外文關鍵詞: | Microjoule-level pulse, Self-phase modulation, Multi-pass cell, Nonlinear spectral broadening |
相關次數: | 點閱:39 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我的工作主要是利用非線性效應拓展脈衝光的頻寬並壓縮其持續時間,從而產生具有高峰值功率的前級脈衝光源,此光源未來將應用於產生極紫外光(EUV)及相關的研究。實驗室未來計劃使用頻率梳雷射(frequency comb laser)作為驅動光源。該雷射具有高重複率(~MHz)和微焦耳至奈焦耳級(μJ、nJ)的功率輸出光源。這種光源中不同頻率成分的相位在時間上是明確且穩定的,其可應用於精確頻率測量、光學鐘以及超快科學等研究領域。然而,目前實驗室沒有頻率梳光纖雷射,我使用實驗室已有的商用脈衝雷射(PHAROS Femtosecond Lasers) 作為驅動光源,以驗證此方案。
由於高能脈衝雷射的頻寬受到增益介質增益帶寬的限制,使得其頻寬相對較窄。脈衝需要透過拓展頻寬並壓縮脈衝持續時間的方式來獲得高峰值功率。本論文探討了使用商用摻鐿鎢酸釓鉀晶體脈衝再生放大器雷射,輸出微焦耳等級脈衝能量,並通過固態多通腔體與氣體多通腔體的非線性效應實現頻譜拓展與脈衝壓縮。我將驅動光源經第一級展頻壓縮架構,使脈衝持續時間從172飛秒壓縮至46飛秒。在第二級展頻中,端對端頻寬從64.25奈米拓展至600奈米,並推算其變換極限脈衝可實現5.6飛秒的理想脈衝持續時間。該成果是實現微焦耳級單周期脈衝光源的重要一步。
Our lab is dedicated to developing high-peak-power seed pulse sources for generating bright EUV light, with further applications in related research. In the future, we aim to use frequency comb lasers as the driving source. These lasers feature high repetition rates (~MHz) and μJ- to nJ-level pulse energies with temporally stable phase relationships among different frequency compo-nents, making them suitable for precision frequency measurements, optical clocks, and ultrafast science. However, due to the unavailability of frequency comb fiber lasers, we used a commercial fs laser as the driving source for our experiments.
The bandwidth of high-energy pulsed lasers is limited by the gain medium, resulting in relatively narrow spectral widths. To achieve higher peak powers, spectrum broadening and pulse compression are essential. This study demon-strates the use of a commercial Yb:KGW regenerative amplifier laser to achieve spectral broadening and pulse compression, realizing efficient micro-joule-level pulse output. Through the first-stage broadening and compression setup, the pulse duration was compressed from 172 fs to 46 fs. In the second stage, the spectral bandwidth was extended from 64.25 nm to 600 nm, with the transform-limited pulse duration estimated to be 5.6 fs. This achievement marks an important step toward realizing microjoule-level single-cycle pulse sources.
[1].Kim, S., Jin, J., Kim, YJ. et al., "High-harmonic generation by resonant plasmon field enhancement," Nature 453, 757–760 (2008).
[2].M. Kretschmar, A. Hadjipittas, B. Major, J. Tümmler, I. Will, T. Nagy, M. J. J. Vrakking, A. Emmanouilidou, and B. Schütte, "Attosecond investigation of ex-treme-ultraviolet multi-photon multi-electron ionization," Optica 9, 639-644 (2022)
[3].Midorikawa, K., "Progress on table-top isolated attosecond light sources, " Nat. Photon. 16, 267–278 (2022).
[4].S. Niazi and F. Doroodgar, "Fundamentals of Femtosecond Laser and Its Applica-tion in Ophthalmology’, Terahertz, Ultrafast Lasers and Their Medical and Indus-trial Applications," IntechOpen, Nov. 02, 2022. doi: 10.5772/intechopen.106701.
[5].Udem, Th et al., "Optical frequency metrology," Nature vol. 416,6877 (2002): 233-7.
[6].National Institute of Standards and Technology, "Optical Frequency Combs," Created December 31, 2009, Updated January 23, 2024
https://www.nist.gov/topics/physics/optical-frequency-combs
[7].Andrew M. Weiner, "Ultrafast Optics, Ch.2.4.2, p57-p59," Copyright © 2009 John Wiley & Sons, Inc.
[8].RP Photonics Encyclopedia, "High Harmonic Generation,"
https://www.rp-photonics.com/high_harmonic_generation.html
[9].A. McPherson, G. Gibson, H. Jara, U. Johann, T. S. Luk, I. A. McIntyre, K. Boy-er, and C. K. Rhodes, "Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases," J. Opt. Soc. Am. B 4, 595-601 (1987)
[10].Schliesser, A., Picqué, N. & Hänsch, T., "Mid-infrared frequency combs," Nature Photon 6, 440–449 (2012).
[11].Z. Pi, H. Y. Kim, and E. Goulielmakis, "Petahertz-scale spectral broadening and few-cycle compression of Yb:KGW laser pulses in a pressurized, gas-filled hol-low-core fiber," Opt. Lett. 47, 5865-5868 (2022)
[12].A. Brodeur and S. L. Chin, "Ultrafast white-light continuum generation and self-focusing in transparent condensed media," J. Opt. Soc. Am. B 16, 637-650 (1999)
[13].Johannes Weitenberg, Andreas Vernaleken, Jan Schulte, Akira Ozawa, Thomas Sartorius, Vladimir Pervak, Hans-Dieter Hoffmann, Thomas Udem, Peter Russ-büldt, and Theodor W. Hänsch, "Multi-pass-cell-based nonlinear pulse compres-sion to 115 fs at 7.5 µJ pulse energy and 300 W average power," Opt. Express 25, 20502-20510 (2017)
[14].Chih-Hsuan Lu, Tobias Witting, Anton Husakou, Marc J.J. Vrakking, A. H. Kung, and Federico J. Furch, "Sub-4 fs laser pulses at high average power and high repe-tition rate from an all-solid-state setup," Opt. Express 26, 8941-8956 (2018)
[15].Ming-Shian Tsai et al. ,Nonlinear compression toward high-energy single-cycle pulses by cascaded focus and compression. Sci. Adv.8, eabo1945(2022).
[16].Sollapur, R., Kartashov, D., Zürch, M. et al. Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers. Light Sci Appl 6, e17124 (2017).
[17].P. Dombi, V. S. Yakovlev, K. O’Keeffe, T. Fuji, M. Lezius, and G. Tempea, "Pulse compression with time-domain optimized chirped mirrors," Opt. Express 13, 10888-10894 (2005)
[18].Vikrant Chauhan, Pamela Bowlan, Jacob Cohen, and Rick Trebino, "Sin-gle-diffraction-grating and grism pulse compressors," J. Opt. Soc. Am. B 27, 619-624 (2010)
[19].Claude Robert, "Simple, stable, and compact multiple-reflection optical cell for very long optical paths," Appl. Opt. 46, 5408-5418 (2007)
[20].H. Kogelnik and T. Li, "Laser Beams and Resonators," Appl. Opt. 5, 1550-1567 (1966)
[21].Andrew M. Weiner, "Ultrafast Optics, Ch.3.6, p118-p130," Copyright © 2009 John Wiley & Sons, Inc.
[22].S. Zahedpour, J. K. Wahlstrand, and H. M. Milchberg, "Measurement of the non-linear refractive index of air constituents at mid-infrared wavelengths," Opt. Lett. 40, 5794-5797 (2015)
[23]." Lasers and laser-related equipment — Test methods for laser beam widths, di-vergence angles and beam propagation ratios" ISO 11146-1:2021
https://www.iso.org/standard/77769.html
[24].A. E. Siegman, "How to (Maybe) Measure Laser Beam Quality," in DPSS (Diode Pumped Solid State) Lasers: Applications and Issues, M. Dowley, ed., Vol. 17 of OSA Trends in Optics and Photonics (Optica Publishing Group, 1998), paper MQ1.
[25].I. H. Malitson, "Interspecimen Comparison of the Refractive Index of Fused Sili-ca*,†," J. Opt. Soc. Am. 55, 1205-1209 (1965)
[26].Ian Coddington, Nathan Newbury, and William Swann, "Dual-comb spectrosco-py," Optica 3, 414-426 (2016)
[27].Kilian Fritsch, Markus Poetzlberger, Vladimir Pervak, Jonathan Brons, and Oleg Pronin, "All-solid-state multipass spectral broadening to sub-20 fs," Opt. Lett. 43, 4643-4646 (2018)
[28].Gaia Barbiero, Haochuan Wang, Martin Graßl, Sebastian Gröbmeyer, Džiugas Kimbaras, Marcel Neuhaus, Vladimir Pervak, Thomas Nubbemeyer, Hanieh Fat-tahi, and Matthias F. Kling, "Efficient nonlinear compression of a thin-disk oscil-lator to 8.5 fs at 55 W average power," Opt. Lett. 46, 5304-5307 (2021)
[29].J. Weitenberg, T. Saule, J. Schulte and P. Rußbüldt, "Nonlinear Pulse Compres-sion to Sub-40 fs at 4.5 μJ Pulse Energy by Multi-Pass-Cell Spectral Broadening," in IEEE Journal of Quantum Electronics, vol. 53, no. 6, pp. 1-4, Dec. 2017
[30].J. R. Birge, R. Ell and F. X. Kartner, "Two-dimensional spectral shearing inter-ferometry (2DSI) for ultrashort pulse characterization," 2006 Conference on La-sers and Electro-Optics and 2006 Quantum Electronics and Laser Science Con-ference, Long Beach, CA, USA, 2006, pp. 1-2.
[31].John N. Sweetser, David N. Fittinghoff, and Rick Trebino, "Transient-grating fre-quency-resolved optical gating," Opt. Lett. 22, 519-521 (1997)
[32].Daniel J. Kane, Jeremy Weston, and Kai-Chien J. Chu, "Real-time inversion of polarization gate frequency-resolved optical gating spectrograms," Appl. Opt. 42, 1140-1144 (2003)
[33].Seung Beom Park, Kyungseung Kim, Wosik Cho, Sung In Hwang, Igor Ivanov, Chang Hee Nam, and Kyung Taec Kim, "Direct sampling of a light wave in air," Optica 5, 402-408 (2018)
[34].Miguel Miranda, Cord L. Arnold, Thomas Fordell, Francisco Silva, Benjamín Alonso, Rosa Weigand, Anne L’Huillier, and Helder Crespo, "Characterization of broadband few-cycle laser pulses with the d-scan technique," Opt. Express 20, 18732-18743 (2012)